Considerando f(x) = x² - 6, o valor de f(3) é:
a) 0
b) 3
c) 6
d) 9
Respostas
Resposta: letra C) 6
Definimos como função do 2º grau, ou função quadrática, a função R → R, ou seja, uma função em que o domínio e o contradomínio são iguais ao conjunto dos números reais, e que possui a lei de formação f(x) = ax² +bx +c.
O gráfico da função quadrática é sempre uma parábola e possui elementos importantes, que são:
as raízes da função quadrática, calculadas pelo x’ e x”;
o vértice da parábola, que pode ser encontrado a partir de fórmulas específicas.
Leia também: O que são domínio, contradomínio e imagem de uma função?
O que é uma função do 2º grau?
Uma função polinomial é conhecida como função do 2º grau, ou também como função quadrática, quando em sua lei de formação ela possui um polinômio de grau dois, ou seja, f(x) = ax² +bx +c, em que a, b e c são números reais, e a ≠ 0. Além da lei de formação, essa função possui domínio e contradomínio no conjunto dos números reais, ou seja, f: R→ R.
Exemplos:
a) f(x) = 2x²+3x + 1
a = 2
b = 3
c=1
b) g(x) = -x² + 4
a = -1
b = 0
c = 4
c) h(x) = x² – x
a = 1
b = -1
c = 0
Valor numérico de uma função
Para encontrar o valor numérico de qualquer função, conhecendo a sua lei de formação, basta realizarmos a substituição do valor de x para encontrar a imagem f(x).
Exemplos:
Dada a função f(x) = x² + 2x – 3, calcule:
a) f(0)
f(0) = 0² +2·0 – 3 = 0 + 0 – 3 = –3
b) f(1)
f(1) = 1² + 2·1 + 3 = 1+2 – 3 = 0
c) f(2)
f(2) = 2² + 2·2+3 = 4+4–3=5
d) f(-2)
f(-2) = (-2)² + 2·(-2) – 3
f(-2) = 4 - 4 – 3 = –
Raízes da função de 2º grau
Para encontrar as raízes da função quadrática, conhecidas também como zero da função, é necessário o domínio das equações do segundo grau. Para resolver uma equação do segundo grau, há vários métodos, como a fórmula de Bhaskara e a soma e produto.
A raízes de uma função quadrática são os valores de x que fazem com que f(x) = 0. Sendo assim, para encontrar as raízes de uma equação do 2º grau, faremos ax² + bx + c = 0.
Exemplo:
f(x) = x² +2x – 3
a = 1
b = 2
c = –3
se quiser ver mais sobre a matéria mesmo não sendo a mesma pergunta: https://brainly.com.br/tarefa/18089241
Resposta:
Explicação passo a passo:
Basta substituir x por 3:
f(x) = x^2 - 6
f(3) = 3^2 - 6
f(3) = 9 - 6
f(3) = 3