Respostas
Resposta:
∫ (x³+x+1)/(x²-1) dx
(x³+x+1)/(x²-1)
x³+x+1 | x²-1
| x
-x³+x
+
2x+1
>>>>>>>>>>>> (x³+x+1)/(x²-1) = x + (2x+1)/(x²-1)
_______________________________________________
(2x+1)/(x²-1) = A/(x-1) + B/(x+1)
2x+1=A(x+1) +B(x-1)
2x+1=x*(A+B) +A-B
{A+B=2
{A-B=1
2A=3 ==>A=3/2
B=A-1=3/2-1=1/2
(2x+1)/(x²-1) = 3/2(x-1) + 1/2(x+1)
_____________________________________________
(x³+x+1)/(x²-1) = x + 3/2(x-1) + 1/2(x+1)
∫ (x³+x+1)/(x²-1) dx
∫ x + 3/2(x-1) + 1/2(x+1) dx
∫ x dx=
x²/2 + c
∫ 3/2(x-1) dx
fazendo u=x-1 ==>du=dx
(3/2) *∫ 1/u du = (3/2) * ln|u| +c ==>como u=x-1
=(3/2) * ln| x-1| + c
∫ 1/2(x+1) dx
fazendo u=x+1 ==>du=dx
(1/2) * ∫1/u du = (1/2)* ln|u| ==>como u=x+1
=(1/2) * ln(x+1| + c
Resposta é a soma das 3 parcelas
= x²/2 + (3/2) * ln| x-1| +(1/2) * ln(x+1| + c