• Matéria: ENEM
  • Autor: Deborazandonai477
  • Perguntado 4 anos atrás

há livros em uma prateleira. de quantas maneiras os livros podem ser arrumados em ordens diferentes de modo que nenhum deles permaneça em seu lugar original,

Respostas

respondido por: veraketymonica
0

Resposta:

Exercício envolvendo permutação caótica.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Fórmula :

P = N! [ 1 - 1/1! + 1/2! - ... ±1/N!]

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Vamos a primeira pergunta , se N = 3 , vamos substituir na fórmula:

P = 3! [ 1 - 1/1! + 1/2! - 1/3! ]

P = 3! [ 1 - 1/1! + 1/2! - 1/3! ]

P = 3! [ 1 - 1/1 + 1/2 - 1/6 ]

P = 3! [ 1/2 - 1/6 ]

MMC(2,6) = 6

P = 3! [ 3-1/6 ]

P = 3! [ 2/6 ]

P = 6 * 2/6

P = 12/6

P = 2

Portanto os livros podem ser arrumados de 2 maneiras diferentes.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Se N = 4 :

P = 4! [ 1 - 1/1! + 1/2! - 1/3! + 1/4! ]

P = 4! [ 1 - 1/1 + 1/2 - 1/6 + 1/24 ]

P = 4! [ 1/2 - 1/6 + 1/24 ]

MMC(2,6,24) = 24

P = 4! [ 12 - 4 + 1/24 ]

P = 4! [ 9/24 ]

P = 24 * 9/24

P = 216/24

P = 9

Portanto os livros podem ser arrumados de 9 maneiras diferentes.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Se N = 5:

P = 5! [ 1 - 1/1! + 1/2! - 1/3! + 1/4! - 1/5! ]

P = 5! [ 1 - 1/1 + 1/2 - 1/6 + 1/24 - 1/120 ]

P = 5! [ 1/2 - 1/6 + 1/24 - 1/120 ]

MMC(2,6,24,120) = 120

P = 5! [ 60 - 20 + 5 - 1/120 ]

P = 5! [ 44/120 ]

P = 120 * 44/120

P = 5280/120

P = 44

Portanto os livros podem ser arrumados de 44 maneiras diferentes.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Espero ter ajudado!

Perguntas similares