• Matéria: Matemática
  • Autor: eff30
  • Perguntado 4 anos atrás

determine o perímetro do triângulo ABC, cujas vértices são A(3,3) B (-5,-6) e C (4,-2)​

Respostas

respondido por: EinsteindoYahoo
3

Resposta:

d²=(x1-x2)²+(y1-y2)²

dAB²(3+5)²+(3+6)²=64+81 ==>dAB=√145

dAC²(3-4)²+(3+2)²=1+25 ==>dAC=√26

dBC²(-5-4)²+(-6+2)²=81+16==>dBC=√97

Perímetro=√145+√26+√97


eff30: Obrigado
respondido por: auditsys
1

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{P = d_{AB} + d_{AC} + d_{BC}}

\mathsf{d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}}

\mathsf{d_{AB} = \sqrt{(-5 - 3)^2 + (-6 - 3)^2}}

\mathsf{d_{AB} = \sqrt{(-8)^2 + (-9)^2}}

\mathsf{d_{AB} = \sqrt{64 + 81}}

\mathsf{d_{AB} = \sqrt{145}}

\mathsf{d_{AC} = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2}}

\mathsf{d_{AC} = \sqrt{(4 - 3)^2 + (-2 - 3)^2}}

\mathsf{d_{AC} = \sqrt{(1)^2 + (-5)^2}}

\mathsf{d_{AC} = \sqrt{1 + 25}}

\mathsf{d_{AC} = \sqrt{26}}

\mathsf{d_{BC} = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2}}

\mathsf{d_{BC} = \sqrt{(4 - (-5))^2 + (-2 - (-6))^2}}

\mathsf{d_{BC} = \sqrt{(4 + 5)^2 + (-2 + 6)^2}}

\mathsf{d_{BC} = \sqrt{(9)^2 + (4)^2}}

\mathsf{d_{BC} = \sqrt{81 + 16}}

\mathsf{d_{BC} = \sqrt{97}}

\mathsf{P = \sqrt{145} + \sqrt{26} + \sqrt{97}}

\boxed{\boxed{\mathsf{P \approx 27 \:u.c}}}

Perguntas similares