• Matéria: Matemática
  • Autor: 2005eliana
  • Perguntado 4 anos atrás

Simplifique:

a) n!/(n−2)!

b) (n+1)!/(n+2)!

c) (n+3)!/(n−2)!∙(n−1)!/(n+2)!​

Respostas

respondido por: Anônimo
3

a)

n!/(n−2)!

n.(n-1).(n-2)!/(n-2)! (corta o (n-2)! de cima com o de baixo)

n.(n-1)

n^2 - n = 0(ficou uma eq do 2 grau)

n.(n-1) = 0

n=0 ou n=1

b)

(n+1)!/(n+2)!

(n+1)!/(n+2).(n+1)! (corta os (n+1)!)

1/n+2

c)

(n+3)!/(n-2)! . (n-1)!/(n+2)!

(n+3).(n+2)!/(n-2)! . (n-1).(n-2)!/(n+2)!

(n+3).(n-1)

n^2-n+3n-3

n^2+2n-3 (eq do 2 grau)

n^2+2n-3=0

fazendo por soma e produto

soma = -b/a = -2

produto = c/a = -3

agora dois números que somados dão -2 e multiplicados dão -3

só pode ser -3 e 1, então

n= -3 ou n= 1

Perguntas similares