• Matéria: Matemática
  • Autor: kely303442
  • Perguntado 4 anos atrás

56. Resolvam as seguintes inequações do 2º grau em R: -2x² - x + 1 < 0​

Respostas

respondido por: CyberKirito
1

\boxed{\begin{array}{l}\sf -2x^2-x+1&lt;0\\\sf fac_{\!\!,}a~f(x)=-2x^2-x+1\\\sf queremos~os~valores~de~x~tais~que~f(x)&lt;0.\\\sf ra\acute izes:\\\sf -2x^2-x+1=0\\\sf\Delta=b^2-4ac\\\sf\Delta=(-1)^2-4\cdot(-2)\cdot1\\\sf\Delta=1+8\\\sf\Delta=9\\\sf x=\dfrac{-b\pm\sqrt{\Delta}}{2a}\\\sf x=\dfrac{-(-1)\pm\sqrt{9}}{2\cdot(-2)}\\\sf x=\dfrac{1\pm3}{-4}\begin{cases}\sf x_1=\dfrac{1+3}{-4}=-\dfrac{4}{4}=-1\\\sf x_2=\dfrac{1-3}{-4}=\dfrac{2\div2}{4\div2}=\dfrac{1}{2}\end{cases}\end{array}}

\Large\boxed{\begin{array}{l}\underline{\rm estudo~do~sinal:}\\\sf f(x)&gt;0\implies -1&lt;x&lt;\dfrac{1}{2}\\\sf f(x)&lt;0\implies x&lt;-1~~ou~~x&gt;\dfrac{1}{2}\\\underline{\rm soluc_{\!\!,}\tilde ao~da~inequac_{\!\!,}\tilde ao:}\\\sf S=\bigg\{ x\in\mathbb{R}/x&lt;-1~ou~x&gt;\dfrac{1}{2}\bigg\}\end{array}}

Anexos:
Perguntas similares