• Matéria: Matemática
  • Autor: heeylyrics
  • Perguntado 4 anos atrás

Determine a forma trigonométrica ou polar do complexo z= -5+5i

Respostas

respondido por: auditsys
0

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{z = -5 + 5i}

\mathsf{\rho = \sqrt{a^2 + b^2}}

\mathsf{\rho = \sqrt{(-5)^2 + 5^2}}

\mathsf{\rho = \sqrt{25 + 25}}

\mathsf{\rho = \sqrt{50}}

\mathsf{\rho = \sqrt{2.5^2}}

\mathsf{\rho = 5\sqrt{2}}

\mathsf{cos\:\Theta = \dfrac{a}{\rho} = \dfrac{-5}{5\sqrt{2}} = -\dfrac{\sqrt{2}}{2}}

\mathsf{sen\:\Theta = \dfrac{b}{\rho} = \dfrac{5}{5\sqrt{2}} = \dfrac{\sqrt{2}}{2}}

\mathsf{\Theta = 135\textdegree = \dfrac{3\pi }{4}}

{\mathsf{z = \rho\:(cos\:\Theta + i\:sen\:\Theta)}}}

\boxed{\boxed{\mathsf{z = 5\sqrt{2}\:(cos\:\dfrac{3\pi }{4} + i\:sen\:\dfrac{3\pi}{4})}}}

Perguntas similares