• Matéria: Matemática
  • Autor: BiaRiberioSimao
  • Perguntado 4 anos atrás

O valor de
x =  log_{3}(5)  \times  log_{4}(27) \times  log_{25}( \sqrt[3]{2} )
é:

A)2
B)1/2
C)1/4
D)4
E)-2​

Respostas

respondido por: auditsys
1

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{log_3\:5 \times log_4\:27\times log_{25}\:\sqrt[3]{2}}

\mathsf{\dfrac{log_4\:5}{log_4\:3} \times \dfrac{log_3\:27}{log_3\:4}\times log_{25}\:\sqrt[3]{2}}

\mathsf{\dfrac{log_4\:5}{log_4\:3} \times \dfrac{3}{log_3\:4}\times log_{25}\:\sqrt[3]{2}}

\mathsf{3\:log_4\:5\times log_{25}\:\sqrt[3]{2}}

\mathsf{3\:log_4\:5\times \dfrac{log_{2}\:\sqrt[3]{2}}{log_{2}\:25}}

\mathsf{3\:log_4\:5\times \dfrac{log_{2}\:2^{\frac{1}{3}}}{log_{2}\:5^2}}

\mathsf{3\:log_4\:5\times \dfrac{1}{3\:log_{2}\:5^2}}

\mathsf{log_4\:5\times \dfrac{1}{log_{2}\:5^2}}

\mathsf{\dfrac{log_2\:5}{log_2\:4}\times \dfrac{1}{log_{2}\:5^2}}

\mathsf{\dfrac{log_2\:5}{2}\times \dfrac{1}{log_{2}\:5^2}}

\mathsf{\dfrac{log_2\:5}{2\: log_{2}\:5^2}}

\mathsf{\dfrac{1}{4} \times \dfrac{log_2\:5}{log_{2}\:5}}

\boxed{\boxed{\boxed{\boxed{\mathsf{\dfrac{1}{4}}}}}}\leftarrow\textsf{letra C}

Perguntas similares