• Matéria: Matemática
  • Autor: kakiiu
  • Perguntado 4 anos atrás

Calcule as somas das algébricas:

A) √75 + √12 - √48

B) √6 + 2√24 + √54 - √150

C) √32 - (-√50 + 4√8)

Respostas

respondido por: Makaveli1996
1

Oie, tudo bom?

a)

 =  \sqrt{75}  +  \sqrt{12}  -  \sqrt{48}  \\  =  \sqrt{5 {}^{2} \: . \: 3 }  +  \sqrt{2 {}^{2}  \: . \: 3}  -  \sqrt{4 {}^{2}  \: . \: 3}  \\  =  \sqrt{5 {}^{2} }  \sqrt{3}  +  \sqrt{2 {}^{2} }  \sqrt{3}  -  \sqrt{4 {}^{2} }  \sqrt{3}  \\  = 5 \sqrt{3}  + 2 \sqrt{3}  - 4 \sqrt{3}  \\  = (5 + 2 - 4) \sqrt{3}  \\  = (7 - 4) \sqrt{3}  \\ \boxed{ = 3 \sqrt{3} }

b)

 =  \sqrt{6}  + 2 \sqrt{24}  +  \sqrt{54}  -  \sqrt{150}  \\  =  \sqrt{6}  + 2 \sqrt{2 {}^{2} \: . \: 6 }  +  \sqrt{3 {}^{2} \: . \: 6 }  -  \sqrt{5 {}^{2}  \: . \: 6}  \\  =  \sqrt{6}  + 2 \sqrt{2 {}^{2} }  \sqrt{6}  +  \sqrt{3 {}^{2} }  \sqrt{6}  -  \sqrt{5 {}^{2} }  \sqrt{6}  \\  =  \sqrt{6}  + 2 \: . \: 2 \sqrt{6}  + 3 \sqrt{6}  - 5 \sqrt{6}  \\  =  \sqrt{6}  + 4 \sqrt{6}  + 3 \sqrt{6}  - 5 \sqrt{6}  \\  = 1 \sqrt{6}  + 4 \sqrt{6}  + 3 \sqrt{6}  - 5 \sqrt{6}  \\  = (1 + 4 + 3 - 5) \sqrt{6}  \\  = (8 - 5) \sqrt{6}  \\  \boxed{ = 3 \sqrt{6} }

c)

 =  \sqrt{32}  - ( -  \sqrt{50}  + 4 \sqrt{8} ) \\  =  \sqrt{2{}^{5} }  - ( -  \sqrt{5 {}^{2}  \: . \: 2}  + 4 \sqrt{2 {}^{3} } ) \\  =  \sqrt{2 {}^{4 + 1} }  - ( -  \sqrt{5 {}^{2} }  \sqrt{2}  + 4 \sqrt{2 {}^{2 + 1} } ) \\  =  \sqrt{2 {}^{4}  \: . \: 2 {}^{1} }  - ( - 5 \sqrt{2}  + 4 \sqrt{2 {}^{2} \: . \: 2 {}^{1}  } ) \\  =  \sqrt{2 {}^{4} \: . \: 2 }  - ( - 5 \sqrt{2}  + 4 \sqrt{2 {}^{2}  \: . \: 2} ) \\  =  \sqrt{2{}^{4} }  \sqrt{2}  - ( - 5 \sqrt{2}  + 4 \sqrt{2 {}^{2} }  \sqrt{2} ) \\  = 2 {}^{2}  \sqrt{2}  - ( - 5 \sqrt{2}  + 4 \: . \: 2 \sqrt{2} ) \\  = 2 {}^{2}  \sqrt{2}  - ( - 5 \sqrt{2}  + 8 \sqrt{2} ) \\  = 4 \sqrt{2}  - ( - 5 + 8) \sqrt{2}  \\  = 4 \sqrt{2}  - 3 \sqrt{2}  \\  = (4 - 3) \sqrt{2}  \\  = 1 \sqrt{2}  \\ \boxed{ =  \sqrt{2} }

Att. NLE Top Shotta

Perguntas similares