• Matéria: Matemática
  • Autor: Sabrina2003c
  • Perguntado 4 anos atrás

Calcule a área das figuras a seguir:

Anexos:

Respostas

respondido por: RodrigoOrvate
1

Resposta:

A) A = 40

B) A1 + A2 = 13km^{2}

C) Atotal = 436 m^{2}

Explicação passo a passo:

a) Na primeira questão, tem-se um paralelogramo e para descobrir a área, precisa descobrir a altura, pois a área é calculado pela base x altura.

Com isso, para descobrir a altura, faz teorema de pitágoras (há um triângulo retângulo) - Imagem a

5^{2} = x^{2} + 3^{2}

x^{2} = 25 - 9

x^{2} = 16

x = 4       (Altura é igual a 4)

Logo,

A = b.h

A = 10.4 = 40 (Base é 10 pois houve a somatória de 3 com 7

b) É uma forma irregular, porém é possível resolver questões desse tipo separando formas que dê para calcular a área - Imagem b

Primeiramente, iremos calcular a área da forma preta (visualize a imagem b) e para isso precisamos achar a altura, já que temos a base (1,5km). Em um dos lados dessa forma possui 2km e o outro lado possui 4km, logo dá para separar em dois lados de 2km, achando a altura da forma preta, logo:

A1 = b.h

A1 = 1,5.2

A1 = 3km^{2}

Após isso, iremos calcular a área da forma cinza (visualize a imagem b) e para isso, basta fazermos o cálculo da área, já que temos a base (nesse caso está no topo da forma, mas também é uma base e a altura.

A2 = b.h

A2 = 5.2

A2 = 10km^{2}

Então, juntamos essas formas novamente e somamos a área:

A1 + A2 = 3 + 10 = 13km^{2} (Imagem b.1)

c) Nesta questão irei ser mais direto, pois é basicamente o mesmo pensamento da questão b

Separa-se a forma irregular em várias formas que dê para calcular a área (imagem c)

Faz-se o cálculo das áreas e soma juntando as formas novamente:

Apreta = b.h

Apreta = 12.8

Apreta = 96m^{2}

Aazul = b.h

Aazul = 12.16

Aazul = 192m^{2}

Avermelha = \frac{b.h}{2}

Avermelha = \frac{10.12}{2}

Avermelha = 60m^{2}

Aamarela = \frac{(b+B).h}{2}

Aamarela = \frac{(16+6).8}{2}

Aamarela = 88 m^{2}

Atotal = 96 + 192 + 60 + 88

Atotal = 436 m^{2}

Anexos:

RodrigoOrvate: Se tiver alguma dúvida é só falar ;)
Sabrina2003c: Obrigadaaaa❤️
RodrigoOrvate: Fiz só uma mudança agora, mas de resto tudo ok :)
Perguntas similares