• Matéria: Matemática
  • Autor: BiancaCelulari
  • Perguntado 4 anos atrás

A regra de Sarrus é suficiente para calcular o determinante de uma matriz de ordem superior a 3? Justifique a sua resposta.​

Respostas

respondido por: rochafranciscaceliar
0

Resposta:

1ª) Se uma matriz possuir uma linha ou uma coluna nula, seu determinante será zero.

Essa propriedade é válida porque cada termo no cálculo do determinante será multiplicado por zero, resultando em um determinante nulo. Vejamos um exemplo para uma matriz de ordem 3:



Matriz de ordem 3 com a segunda coluna composta por zeros.

Calculando o determinante dessa matriz pela Regra de Sarrus, temos:

Det = A11·0·A33 + 0·A23·A31 + A13·A21·0 – A31·0·A13 – 0·A23·A11 – A33·A21·0 = 0

Podemos ainda verificar essa propriedade através de qualquer matriz que apresente uma linha ou coluna formada por zeros.

2ª) O determinante de uma matriz será sempre igual ao determinante de sua transposta.

É fácil verificar essa propriedade, pois, ao calcular o determinante de uma matriz A ou de sua transposta At, estaremos sempre realizando as mesmas multiplicações e as mesmas adições. Vejamos o cálculo do determinante das matrizes A e At de ordem 2:



Matriz de ordem 2 e sua transposta.

Vamos calcular o determinante das duas matrizes:

Det A = A11·A22 – A21·A12

Det At = A11·A22 – A12·A21

Det A = Det At

3ª) Se trocarmos as duas linhas ou as duas colunas da matriz, trocaremos o sinal do determinante.

Essa propriedade recebe também o nome de Teorema de Bézout e pode ser facilmente comprovada através de exemplos. Veja:



Matrizes A e A', ambas de ordem 2.

Observe que a Matriz A' é uma cópia da A, mas as linhas 1 e 2 foram trocadas. Vejamos o cálculo de seus determinantes:

Det A = A11·A22 – A21·A12

Det A' = A21·A12 – A11·A22

Det A = – Det A'

4ª) Se multiplicarmos os elementos de uma linha ou de uma coluna da matriz por um valor n qualquer, o determinante também será multiplicado por n.

A 4ª propriedade é válida porque, no cálculo do determinante, cada produto é multiplicado por n, o que, colocando em evidência, corresponde a multiplicar o próprio determinante por n. Vejamos um exemplo para uma matriz de ordem 3:



Matrizes A e A', ambas de ordem 3.

Vamos calcular o determinante dessa matriz pela Regra de Sarrus:



Perguntas similares