• Matéria: Matemática
  • Autor: CristianFischer
  • Perguntado 3 anos atrás

Resolver as seguintes equações:
(anexei abaixo)

Anexos:

Respostas

respondido por: auditsys
1

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\begin{bmatrix}\cancel1&\cancel3\\\cancel-2&\cancel2\end{bmatrix}.\begin{bmatrix}\cancel a&\cancel b\\\cancel c&\cancel d\end{bmatrix} = \begin{bmatrix}\cancel5&\cancel7\\\cancel-5&\cancel9\end{bmatrix}

\begin{cases}\mathsf{a + 3c = 5}\\\mathsf{-2a + 2c = -5}\end{cases}

\mathsf{a = 5 - 3c}

\mathsf{-2(5 - 3c) + 2c = -5}

\mathsf{-10 + 6c + 2c = -5}

\mathsf{8c = 5}

\mathsf{c = \dfrac{5}{8}}

\mathsf{a = 5 - 3\left(\dfrac{5}{8}\right)}

\mathsf{a = 5 - \left(\dfrac{15}{8}\right)}

\mathsf{a = \dfrac{40 - 15}{8}}

\mathsf{a = \dfrac{25}{8}}

\begin{cases}\mathsf{b + 3d = 7}\\\mathsf{-2b + 2d = 9}\end{cases}

\mathsf{b = 7 - 3d}

\mathsf{-2(7 - 3d) + 2d = 9}

\mathsf{-14 + 6d + 2d = 9}

\mathsf{8d = 23}

\mathsf{d = \dfrac{23}{8}}

\mathsf{b = 7 - 3\left(\dfrac{23}{8}\right)}

\mathsf{b = 7 - \left(\dfrac{69}{8}\right)}

\mathsf{b = \dfrac{56 - 69}{8}}

\mathsf{b = -\dfrac{13}{8}}

\begin{bmatrix}\cancel a&\cancel b\\\cancel c&\cancel d\end{bmatrix} = \begin{bmatrix}\cancel 25/8&\cancel -13/8\\\cancel 5/8&\cancel 23/8\end{bmatrix}

\begin{bmatrix}\cancel a&\cancel b&\cancel c\\\cancel d&\cancel e&\cancel f\\\cancel g&\cancel h&\cancel i\end{bmatrix}.\begin{bmatrix}\cancel 1&\cancel 1&\cancel 1\\\cancel 0&\cancel 1&\cancel 1\\\cancel 0&\cancel 0&\cancel 1\end{bmatrix} = \begin{bmatrix}\cancel 1&\cancel 0&\cancel 0\\\cancel 1&\cancel 1&\cancel 0\\\cancel 2&\cancel 1&\cancel 1\end{bmatrix}

\mathsf{a(1) + b(0) + c(0) = 1}

\mathsf{a + 0 + 0 = 1}

\mathsf{a = 1}

\mathsf{a(1) + b(1) + c(0) = 0}

\mathsf{1 + b + 0 = 0}

\mathsf{b = -1}

\mathsf{a(1) + b(1) + c(1) = 0}

\mathsf{1 - 1 + c = 0}

\mathsf{c = 0}

\mathsf{d(1) + e(0) + f(0) = 1}

\mathsf{d + 0 + 0 = 1}

\mathsf{d = 1}

\mathsf{d(1) + e(1) + f(0) = 0}

\mathsf{1 + e + 0 = 0}

\mathsf{e = -1}

\mathsf{d(1) + e(1) + f(1) = 0}

\mathsf{1 - 1 + f = 0}

\mathsf{f = 0}

\mathsf{g(1) + h(0) + i(0) = 1}

\mathsf{g + 0 + 0 = 1}

\mathsf{g = 1}

\mathsf{g(1) + h(1) + i(0) = 0}

\mathsf{1 + h + 0 = 0}

\mathsf{h = -1}

\mathsf{g(1) + h(1) + i(1) = 0}

\mathsf{1 - 1 + i = 0}

\mathsf{i = 0}

\begin{bmatrix}\cancel a&\cancel b&\cancel c\\\cancel d&\cancel e&\cancel f\\\cancel g&\cancel h&\cancel i\end{bmatrix} = \begin{bmatrix}\cancel 1&\cancel -1&\cancel 0\\\cancel 1&\cancel -1&\cancel 0\\\cancel 1&\cancel -1&\cancel 0\end{bmatrix}

Perguntas similares