• Matéria: Matemática
  • Autor: rayannevalle
  • Perguntado 9 anos atrás

Resolva a integra ∫ (x+1)cos2xdx pelo método da integração por partes

Respostas

respondido por: Niiya
2
Fazendo as substituições:

u=x+1~~~~~~~~~\longrightarrow~~~~~~~~~du=dx\\\\\frac{1}{2}sen(2x)~~~~~~~~~~\longleftarrow~~~~~~~~~v=cos(2x)dx

Temos, pela integração por partes, que

\displaystyle\int udv=uv-\int vdu\\\\\\\int(x+1)cos(2x)dx=(x+1)\dfrac{sen(2x)}{2}-\int\dfrac{1}{2}sen(2x)dx\\\\\\\int(x+1)cos(2x)dx=(x+1)\dfrac{sen(2x)}{2}-\dfrac{1}{2}\int sen(2x)dx

Note que, se fizermos a=2x, então

da=2dx~~\therefore~~dx=\frac{1}{2}da

Daí,

\displaystyle\int sen(2x)dx=\int sen(a)\dfrac{1}{2}da=\dfrac{1}{2}\int sen(a)da=-\dfrac{1}{2}cos(a)\\\\\\\boxed{\boxed{\int sen(2x)dx=-\dfrac{1}{2}cos(2x)}}~~(sem~a~constante)
____________________

Voltando:

\displaystyle\int(x+1)cos(2x)dx=(x+1)\dfrac{sen(2x)}{2}-\dfrac{1}{2}\int sen(2x)dx\\\\\\\int(x+1)cos(2x)dx=(x+1)\dfrac{sen(2x)}{2}-\dfrac{1}{2}\left(-\dfrac{1}{2}cos(2x)\right)+C\\\\\\\boxed{\boxed{\int(x+1)cos(2x)dx=(x+1)\dfrac{sen(2x)}{2}+\dfrac{cos(2x)}{4}+C}}
Perguntas similares