• Matéria: Matemática
  • Autor: ratadeusdosol
  • Perguntado 4 anos atrás

Um técnico parou em um ponto A , e avistou o topo de uma montanha com o teodolito observando um ângulo de 30° ,depois caminhou 200m em direção a montanha e parou em um ponto B de onde avistou seu topo sob o ângulo de 60° Desprezando a altura dessa pessoa ,calcule a altura aproximadamente dessa montanha

Respostas

respondido por: elienealvesdoc96
2

RESPOSTA:

Um técnico parou em um ponto A , e avistou o topo de uma montanha com o teodolito observando um ângulo de 45° ,depois caminhou 200m em direção a montanha e parou em um ponto B de onde avistou seu topo sob o ângulo de 60° Desprezando a altura dessa pessoa ,calcule a altura aproximadamente dessa montanha ( 9 ano )

A altura aproximadamente dessa montanha é 474 metros.

Observe a imagem abaixo.

O triângulo ACD é retângulo em C, sendo h a altura da montanha.

Sabemos que a soma dos ângulos internos de um triângulo é igual a 180º.

Então, o ângulo D do triângulo ACD mede 180º - 90º - 45º = 45º.

Ou seja, o triângulo ACD é

Perguntas similares