• Matéria: Matemática
  • Autor: patriciaketlem1
  • Perguntado 4 anos atrás

1 – Dados log 2 ≃ 0,3, log 3 ≃ 0,5 e log 5 ≃ 0,7, calcule: log 30.
2 – Dados log 5 ≃ 0,7 e log 7 ≃ 0,8 calcule: log5 7. (Utilize Mudança de base)
3 – Utilizando uma calculadora determine o valor aproximado de log5 7, e compare o resultado encontrado no exercício anterior.

40
Gráfico da função logarítmica
>0>0≠1 !
Observe os seguintes gráficos de funções logarítmicas: Não se esqueça que


Anônimo: Tenho as respostas do Pet 1,2 e 3 do 6°,7°8° e 9° ensino funamental e do 1°, 2° e 3 ° Ensino médio. Contato: (31) 97101-3500
Anônimo: Cansado de ver propagandas, e caçar questões?? Resolvo seus problemas!!!
Faço as atividades do PET’s, provas, atividades complementares, entre outros. Preços sugestivos e a combinar, interessados entrar em contato: (38) 99854-2256
- Completo seu classroom
- Arquivo pronto para mandar pros professores
-Tenho todos os PET a pronta entrega, volume 1 ao 3
-Respostas em PDF ou WORD
-Diversas formas de pagamento
kethellen9864734: Eu quero do ensino medio
maria6541037: Maa isso e do EM
marianacordeiro175: O mds kk
maria6541037: Ne?
maria6541037: Tende pas

Respostas

respondido por: andre19santos
679

QUESTÃO 1

Podemos escrever 30 como o produto 2·3·5:

log 30 = log 2·3·5

Utilizando a propriedade do logaritmo do produto, temos:

log 30 = log 2 + log 3 + log 5

log 30 = 0,3 + 0,5 + 0,7

log 30 = 1,5

QUESTÃO 2

A mudança de base é feita da seguinte forma:

logₐ b = logₓ b/logₓ a

Neste caso, queremos calcular o log na base 5 de 7, para isso, utilizamos a base 10 para a mudança de base. Temos então a = 5, b = 7 e x = 10:

log₅ 7 = log₁₀ 7/log₁₀ 5

log₅ 7 = 0,8/0,7

log₅ 7 ≈ 1,14

QUESTÃO 3

O valor aproximado na calculadora é 1,21. A diferença se encontra no arredondamento dos valores de log 5 e log 7.


Anônimo: bom dia
tati00121: obrigada :)
deathxx: obgdaaaa
danyelaribeiro74: Obrigada
ester6362041: Obg
marianacordeiro175: Obrigada! :D
maria6541037: Obg
emilyrebeca2019: obg
marianacordeiro175: ,-,
larissamikaelle23: vllwwwww mn
respondido por: reuabg
0

As questões 1 e 2 tratam sobre logaritmos.

O que são logaritmos?

Logaritmos são uma forma de representar exponenciações de uma base. Assim, temos que a expressão \log_{a}b=x indica que a base a elevada à potência x resulta no logaritmando b. Quando o valor de a não é informado, por padrão é indicada a base 10.

Questão 1)

Quando dois logaritmos de mesma base são somados, podemos representar apenas um logaritmo da multiplicação dos logaritmandos. Da mesma forma, quando dois logaritmos de mesma base são subtraídos, podemos representar apenas um logaritmo da divisão dos logaritmandos

Foi informado que log 2 é aproximadamente 0,3, log 3 é aproximadamente 0,5, e log 5 é aproximadamente 0,7.

Portanto, para encontrarmos o valor de log 30, podemos realizar a seguinte transformação:

  • 30 pode ser escrito como 2 x 3 x 5.

Com isso, temos que log(30) = log(2 x 3 x 5). Utilizando a propriedade da multiplicação de logaritmos, obtemos a expressão sendo log 2 + log 3 + log 5.

Assim, utilizando os valores informados, obtemos que log 30 = 0,3 + 0,5 + 0,7 = 1,5.

Questão 2)

Para encontrarmos o valor de log5 7, onde 5 é a base e 7 é o logaritmando, devemos utilizar a mudança de bases de logaritmos.

Na mudança de bases, temos que \log_{a}b = log_{c}b/log_{c}a.

Com isso, utilizando a = 5, b = 7, c = 10, obtemos que \log_{5}7 = log_{10}7/log_{10}5 = 0,8/0,7 = 1,142.

Questão 3)

Utilizando uma calculadora, obtemos que o valor de \log_{5}7 é aproximadamente 1,20. A diferença do resultado obtido na questão 1 se deve ao fato dos valores de log 5 e log 7 terem sido aproximados para valores não tão próximos dos valores reais, e, assim, o erro de aproximação é propagado para outras operações em sequência.

Para aprender mais sobre logaritmos, acesse:

https://brainly.com.br/tarefa/47112334

https://brainly.com.br/tarefa/45671307

https://brainly.com.br/tarefa/38073448

Anexos:
Perguntas similares