• Matéria: Matemática
  • Autor: j250878
  • Perguntado 9 anos atrás

a integral da raiz cubica de 6-2x dx

Respostas

respondido por: Lukyo
2
\displaystyle\int{\,^{3}\!\!\!\sqrt{6-2x}\,dx}\\ \\ \\ =-\dfrac{1}{2}\cdot (-2)\int{\,^{3}\!\!\!\sqrt{6-2x}\,dx}\\ \\ \\ =-\dfrac{1}{2}\cdot \int{(-2)\,^{3}\!\!\!\sqrt{6-2x}\,dx}\\ \\ \\ =-\dfrac{1}{2}\cdot \int{\,^{3}\!\!\!\sqrt{6-2x}\cdot (-2)\,dx}~~~~~~\mathbf{(i)}


Substituição:

6-2x=u~\Rightarrow~-2x\,dx=du


Substituindo em \mathbf{(i)}, a integral fica

=-\dfrac{1}{2}\cdot \displaystyle\int{\,^{3}\!\!\!\sqrt{u}\,du}\\ \\ \\ =-\dfrac{1}{2}\cdot \int{u^{1/3}\,du}~~~~~~\mathbf{(ii)}


Regra da integral da potência:

\displaystyle\int{u^{n}\,du}=\dfrac{u^{n+1}}{n+1}\,,~~n\neq -1.


Aplicando a regra acima em \mathbf{(ii)}, a integral fica

=-\dfrac{1}{2}\cdot \displaystyle\int{u^{1/3}\,du}\\ \\ \\ =-\dfrac{1}{2}\cdot \dfrac{u^{(1/3)+1}}{\frac{1}{3}+1}+C\\ \\ \\ =-\dfrac{1}{2}\cdot \dfrac{u^{4/3}}{\frac{4}{3}}+C\\ \\ \\ =-\dfrac{1}{2}\cdot \dfrac{3}{4}\,u^{4/3}+C\\ \\ \\ =-\dfrac{3}{8}\,u^{4/3}+C\\ \\ \\ =-\dfrac{3}{8}\,(6-2x)^{4/3}+C\\ \\ \\ \\ \Rightarrow~\boxed{\begin{array}{c} \displaystyle\int{\,^{3}\!\!\!\sqrt{6-2x}\,dx}=-\dfrac{3}{8}\,(6-2x)^{4/3}+C \end{array}}

Perguntas similares