• Matéria: Matemática
  • Autor: lucas27484
  • Perguntado 3 anos atrás

Resolva simultaneamente o SL Ax = b nos seguintes casos :


a) A = \left[\begin{array}{ccc}1&2&3\\2&5&3\\1&0&8\end{array}\right], b = \left[\begin{array}{ccc}1\\0\\0\end{array}\right] , b = \left[\begin{array}{ccc}0\\1\\0\end{array}\right] e \ b = \left[\begin{array}{ccc}0\\0\\1\end{array}\right]\\\\




b) A = \left[\begin{array}{ccc}1&6&4\\2&4&1\\-1&2&5\end{array}\right] , b = \left[\begin{array}{ccc}1\\0\\0\end{array}\right] , b = \left[\begin{array}{ccc}0\\1\\0\end{array}\right] e \ b = \left[\begin{array}{ccc}0\\0\\1\end{array}\right]

Respostas

respondido por: Lionelson
3

Temos diversas maneiras de resolver sistemas lineares, uma delas é o Método da Matriz Inversa, isso é, dado um sistema AX = B, invertemos a matriz A e multiplicamos dos dois lados, ou seja

                                      \Large\displaystyle\text{$\begin{gathered}AX = B\Rightarrow X = A^{-1}B\\ \\\end{gathered}$}

Logo vamos achar a matriz inversa, por eliminação de Gauss temos:

                                          \Large\displaystyle\text{$\begin{gathered}\left[\begin{array}{c c c | c c c}1 & 2 & 3 & 1 & 0 & 0\\2 & 5 & 3 & 0 & 1 & 0\\1 & 0 & 8 & 0 & 0 & 1\\\end{array}\right]\end{gathered}$}

Agora, através de operações básicas

          \large\displaystyle\text{$\begin{gathered}\left[\begin{array}{c c c | c c c}1 & 2 & 3 & 1 & 0 & 0\\2 & 5 & 3 & 0 & 1 & 0\\1 & 0 & 8 & 0 & 0 & 1\\\end{array}\right]\xrightarrow{L_2 - 2 L_1 \rightarrow L_2}\left[\begin{array}{c c c | c c c}1 & 2 & 3 & 1 & 0 & 0\\0 & 1 & -3 & -2 & 1 & 0\\1 & 0 & 8 & 0 & 0 & 1\\\end{array}\right]\end{gathered}$}

    \large\displaystyle\text{$\begin{gathered}\left[\begin{array}{c c c | c c c}1 & 2 & 3 & 1 & 0 & 0\\0 & 1 & -3 & -2 & 1 & 0\\1 & 0 & 8 & 0 & 0 & 1\\\end{array}\right]\xrightarrow{L_3 - L_1 \rightarrow L_3}\left[\begin{array}{c c c | c c c}1 & 2 & 3 & 1 & 0 & 0\\0 & 1 & -3 & -2 & 1 & 0\\0 & -2 & 5 & -1 & 0 & 1\\\end{array}\right]\end{gathered}$}  

\large\displaystyle\text{$\begin{gathered}\left[\begin{array}{c c c | c c c}1 & 2 & 3 & 1 & 0 & 0\\0 & 1 & -3 & -2 & 1 & 0\\0 & -2 & 5 & -1 & 0 & 1\\\end{array}\right]\xrightarrow{2L_2 - L_3 \rightarrow L_3}\left[\begin{array}{c c c | c c c}1 & 2 & 3 & 1 & 0 & 0\\0 & 1 & -3 & -2 & 1 & 0\\0 & 0 & 1 & 5 & -2 & -1\\\end{array}\right]\end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\left[\begin{array}{c c c | c c c}1 & 2 & 3 & 1 & 0 & 0\\0 & 1 & -3 & -2 & 1 & 0\\0 & 0 & 1 & 5 & -2 & -1\\\end{array}\right]\xrightarrow{L_2 + 3L_3 \rightarrow L_2}\left[\begin{array}{c c c | c c c}1 & 2 & 3 & 1 & 0 & 0\\0 & 1 & 0 & 13 & -5 & -3\\0 & 0 & 1 & 5 & -2 & -1\\\end{array}\right]\end{gathered}$}

 \large\displaystyle\text{$\begin{gathered}\left[\begin{array}{c c c | c c c}1 & 2 & 3 & 1 & 0 & 0\\0 & 1 & 0 & 13 & -5 & -3\\0 & 0 & 1 & 5 & -2 & -1\\\end{array}\right]\xrightarrow{L_1 - 3L_3 \rightarrow L_1}\left[\begin{array}{c c c | c c c}1 & 2 & 0 & -14 & 6 & 3\\0 & 1 & 0 & 13 & -5 & -3\\0 & 0 & 1 & 5 & -2 & -1\\\end{array}\right]\end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\left[\begin{array}{c c c | c c c}1 & 2 & 0 & -14 & 6 & 3\\0 & 1 & 0 & 13 & -5 & -3\\0 & 0 & 1 & 5 & -2 & -1\\\end{array}\right]\xrightarrow{L_1 - 2L_2 \rightarrow L_1}\left[\begin{array}{c c c | c c c}1 & 0 & 0 & -40 & 16 & 9\\0 & 1 & 0 & 13 & -5 & -3\\0 & 0 & 1 & 5 & -2 & -1\\\end{array}\right]\end{gathered}$}

Portanto a matriz inversa é:

                         \Large\displaystyle\text{$\begin{gathered}\left[\begin{array}{c c c}1 & 2 & 3\\2 & 5 & 3\\1 & 0 & 8\\\end{array}\right]^{-1} = \left[\begin{array}{c c c}-40 & 16 & 9\\13 & -5 & -3\\5 & -2 & -1\\\end{array}\right]\end{gathered}$}

Faça o mesmo processo para a matriz do item b e você deve encontrar

                      \Large\displaystyle\text{$\begin{gathered}\left[\begin{array}{c c c}1 & 6 & 4\\2 & 4 & 1\\-1 & 2 & 5\\\end{array}\right]^{-1} = \left[\begin{array}{c c c}-\frac{9}{8} & \frac{11}{8} & \frac{5}{8} \\ \\\frac{11}{16}  & -\frac{9}{16}  & -\frac{7}{16} \\ \\ -\frac{1}{2}  & \frac{1}{2}  & \frac{1}{2} \end{array}\right]\end{gathered}$}

Agora que temos todas as matrizes inversas, podemos aplicar simplesmente

                                  \Large\displaystyle\text{$\begin{gathered}AX = B\Rightarrow X = A^{-1}B\\ \\\end{gathered}$}

E achar as soluções.

Os resultados do sistema para os 3b's diferentes já estão na matriz inversa, pois

                       \Large\displaystyle\text{$\begin{gathered}\left[\begin{array}{c c c}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\a_{31} & a_{32} & a_{33}\\\end{array}\right] \left[\begin{array}{c}1 \\0 \\0 \\\end{array}\right] = \left[\begin{array}{c}a_{11} \\a_{21} \\a_{31} \\\end{array}\right]\end{gathered}$}

De maneira análoga

                       \Large\displaystyle\text{$\begin{gathered}\left[\begin{array}{c c c}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\a_{31} & a_{32} & a_{33}\\\end{array}\right] \left[\begin{array}{c}0 \\1 \\0 \\\end{array}\right] = \left[\begin{array}{c}a_{12} \\a_{22} \\a_{32} \\\end{array}\right]\end{gathered}$}

Por fim

                       \Large\displaystyle\text{$\begin{gathered}\left[\begin{array}{c c c}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\a_{31} & a_{32} & a_{33}\\\end{array}\right] \left[\begin{array}{c}0 \\0 \\1 \\\end{array}\right] = \left[\begin{array}{c}a_{13} \\a_{23} \\a_{33} \\\end{array}\right]\end{gathered}$}

Para achar as soluções basta olhar as colunas da matriz inversa.

                                                             

Espero ter ajudado

Qualquer dúvida respondo nos comentários

Veja mais sobre em:

Inversa por Matriz Adjunta - brainly.com.br/tarefa/32001981

Anexos:

Lionelson: Muito da explicação teve que ser apagada por conta do limite de caracteres, caso tenha alguma dúvida em algum passo digite aqui.
lucas27484: ok Henrique, a resposta está excelente, muito obrigado ^_^
lucas27484: verifique se são invertiveis as matrizes

[tex]\left[\begin{array}{ccc}1&6&4\\2&4&1\\-1&2&5\end{array}\right], \ \left[\...
https://brainly.com.br/tarefa/47244282?utm_source=android&utm_medium=share&utm_campaign=question
lucas27484: verifique se são invertiveis as matrizes

[tex]\left[\begin{array}{ccc}2&1&-1\\-3&-1&2\\-2&1&2\end{array}\right] , \ \le...
https://brainly.com.br/tarefa/47244378?utm_source=android&utm_medium=share&utm_campaign=question
lucas27484: poderia me ajudar nesse questão quando vc tiver tempo? eu coloquei em duas perguntas mais é a mesma questão
Perguntas similares