A soma dos n primeiros termos de uma PA infinita é dada por: Sn=4n2−6n, para todo inteiro n≥1 .
a) Qual o primeiro termo dessa PA?
b) Qual a razão dessa PA?
Respostas
respondido por:
3
Resposta:
Explicação passo a passo:
A soma dos n primeiros termos de uma PA infinita é dada por: Sn=4n^2−6n, para todo inteiro n≥1 .
a) Qual o primeiro termo dessa PA?
Sn=4n^2−6n
S1 = 4.1^2 - 6.1
S1 = 4.1 - 6
S1 = 4 - 6
S1 = - 2
a1 = - 2
R.: a1 = - 2
________________
b) Qual a razão dessa PA?
Sn=4n^2−6n
Sn=4n^2−6n
S2=4.2^2−6.2
S2 = 4.4 - 12
S2 = 16 - 12
S2 = 4
S2= a1 + a2
4 = - 2 + a2
4 + 2 = a2
6 = a2
a2 = 6
r = a2 - a1
r = 6 - (-2)
r = 6+2
r = 8
R.: r = 8
Perguntas similares
3 anos atrás
3 anos atrás
5 anos atrás
5 anos atrás
5 anos atrás
7 anos atrás
7 anos atrás
7 anos atrás