• Matéria: Matemática
  • Autor: heiigirl
  • Perguntado 3 anos atrás

Encontre as raízes das equações do 2° grau.

a) {x}^{2} - 6x +8 =0

b) {x}^{2} - 8x + 16 = 0

c) {x}^{2} -7x + 10 = 0

d) {x}^{2} + 5x - 36 = 0

e) {2x}^{2} + 3x - 5 = 0


f) {4x}^{2} - 5x - 6 = 0

Respostas

respondido por: GabrielGNCBR
1

Resposta:

a)x_{1} = 2; x_{2} = 4

Explicação passo a passo:

Primeiro devemos saber a fórmula de bhaskara:

\frac{-b-+\sqrt{b^{2}-4ac} }{2a}

Sendo:

ax^{2} + bx +c

a) a = 1 b = - 6 c = 8

\frac{-(-6)-+\sqrt{6^{2}-4.1.8} }{2.1}\\\\\frac{6-+\sqrt{36-32} }{2} = \frac{6-+\sqrt{4} }{2}\\\\\frac{6+2}{2}  = 4\\\\\frac{6-2}{2} = 2

b) a = 1 b = - 8 c = 16

\frac{-(-8)-+\sqrt{(-8)^{2}-4.1.16} }{2.1}\\\\\frac{8-+\sqrt{64-64} }{2} = \frac{8-+0}{2 } \\ \\\frac{8}{2} = 4

c) a = 1 b = - 7 c = 10

\frac{-(-7)-+\sqrt{7^{2}-4.1.10} }{2.1}\\\\\frac{7-+\sqrt{49-40} }{2} = \frac{7-+\sqrt{9} }{2}\\\\\frac{7+3}{2}  = 5\\\\\frac{7-3}{2} = 2

d) a = 1 b = 5 c = -36

\frac{-(5)-+\sqrt{5^{2}-4.1.-36} }{2.1}\\\\\frac{-5-+\sqrt{25+144} }{2} = \frac{-5-+\sqrt{169} }{2}\\\\\frac{-5+13}{2}  = 4\\\\\frac{-5-13}{x} = -9

e) a = 2 b) = 3 c) = - 5

\frac{-(3)-+\sqrt{3^{2}-4.2.-5} }{2.2}\\\\\frac{-3-+\sqrt{9 + 40} }{4} = \frac{-3-+\sqrt{49} }{4}\\\\\frac{-3+7}{4}  = 1\\\\\frac{-3-7}{4} = -2,5

f) a = 4 b) = - 5 c = - 6

\frac{-(-5)-+\sqrt{5^{2}-4.4.-6} }{2.4}\\\\\frac{5-+\sqrt{25+96} }{8} = \frac{5-+\sqrt{121} }{8}\\\\\frac{5+11}{8}  = 2\\\\\frac{5-11}{8} = - 0,75

Espero ter ajudado~~


heiigirl: obg
GabrielGNCBR: Por nada. ^-^
Perguntas similares