Respostas
Explicação passo a passo:
A matriz de ordem 3 tem os seguintes termos:
a11, a12, a13
a21, a22, a23
a31, a32, a33
Se aij = 0 para i > j, então os elementos a21, a31 e a32 são iguais a zero, o que torna essa matriz uma matriz triangular superior. Os demais elementos são dados por 4i - 5i + 2, então:
a11 = 4.1 - 5.1 + 2 = 1
a12 = 4.1 - 5.2 + 2 = -4
a13 = 4.1 - 5.3 + 2 = -9
a22 = 4.2 - 5.2 + 2 = 0
a23 = 4.2 - 5.3 + 2 = -5
a33 = 4.3 - 5.3 + 2 = -1
A matriz é representada por:
1 -4 -9
0 0 -5
0 0 -1
A=║3 4 5║ a₁₁=2.1+1=3 a₂₁=0 a₃₁=0
0 6 7 a₁₂=2.1+2=4 a₂₂=2.2+2=6 a₃₂=0
0 0 9 a₁₃=2.1+3=5 a₂₃=2.2+3=7 a₃₃=2.3+3=9
Resposta:
Explicação passo a passo:
║a₁₁ a₁₂ a₁₃║ 0,se i>j
a₂₁ a₂₂ a₂₃ 2i+j se i≤j
a₃₁ a₃₂ a₃₃
A=║3 4 5║ a₁₁=2.1+1=3 a₂₁=0 a₃₁=0
0 6 7 a₁₂=2.1+2=4 a₂₂=2.2+2=6 a₃₂=0
0 0 9 a₁₃=2.1+3=5 a₂₃=2.2+3=7 a₃₃=2.3+3=9