A função f: [-2, 4] —> R, definida por f(x) = – x² + 2x + 3, possui seu gráfico apresentado a seguir. Determine os zeros desta função.
Anexos:
Respostas
respondido por:
1
Resposta:
x'=-1 e x"=3
Explicação passo a passo:
Para determinar as raízes (valores que zeram) dessa função de grau 2 há duas formas.
- Expressão de bhaskara.
Igualando a função do tipo ax² + bx + c a zero, recorreremos a expressão: x= (-b±√Δ)2a , onde Δ=b²-4.a.c .
– x² + 2x + 3=0
Δ= 4-4.(-1).(3)
Δ= 4 + 12
Δ=16
Agora basta aplicar na outra formula.
x= (-2 ±√16)/(-2)
x=(-2±4)/(-2)
x'= -2/2 =-1
x''= 6/2 = 3
- Soma e produto.
Sendo a função do tipo ax² + bx + c pode-se afirmar que -b/a é a soma de suas raízes e c/a o produto delas. Com isso, – x² + 2x + 3 tem a soma de suas raízes igual a 2 e o produto igual a -3, dos possíveis números racionais que obedecem a x'+x"=2 e x'.x"=-3 os únicos são -1 e 3.
Frodotlg:
Tudo errado
Perguntas similares
3 anos atrás
5 anos atrás
5 anos atrás
8 anos atrás