• Matéria: Matemática
  • Autor: Skoy
  • Perguntado 3 anos atrás

Resolva a seguinte integral:

 \displaystyle\int \dfrac{-2x^3 + 4}{x(x^2 + 3) }


Anônimo: oi

Respostas

respondido por: ShinyComet
21

Resposta:

\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2x+\dfrac{4\ln|x|}{3}-\dfrac{2\ln|x^2+3|}{3}+2\sqrt{3}\arctan\left(\dfrac{x}{\sqrt{3}}\right)\right)+C

Resolução:

Podemos resolver este exercício usando as Regras de Integração, Simplificando algumas Frações e usando Substituições.

    \displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2\displaystyle\int{\dfrac{x^3-2}{x(x^2+3)}\;dx}\Leftrightarrow

\Leftrightarrow\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2\displaystyle\int{\left(1+\dfrac{-3x-2}{x(x^2+3)}}\;dx\right)}\Leftrightarrow

\Leftrightarrow\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2\left(\displaystyle\int{1\;\;dx}+\displaystyle\int{\left(\dfrac{-3x-2}{x(x^2+3)}}\;dx\right)}\right)\Leftrightarrow

\Leftrightarrow\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2x-2\displaystyle\int{\left(\dfrac{-3x-2}{x(x^2+3)}}\;dx\right)}\Leftrightarrow

\Leftrightarrow\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2x-2\left(\displaystyle\int{\left(-\dfrac{2}{3x}+\dfrac{2x-9}{3(x^2+3)}\;dx\right)\right)}\Leftrightarrow

\Leftrightarrow\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2x-2\left(\displaystyle\int{\left(-\dfrac{2}{3x}\;dx\right)}+\displaystyle\int{\left(\dfrac{2x-9}{3(x^2+3)}\;dx\right)}\right)\Leftrightarrow

\Leftrightarrow\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2x+\dfrac{4}{3}\displaystyle\int{\left(\dfrac{1}{x}\;dx\right)}-\dfrac{2}{3}\displaystyle\int{\left(\dfrac{2x-9}{x^2+3}\;dx\right)}\Leftrightarrow

\Leftrightarrow\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2x+\dfrac{4}{3}\ln|x|-\dfrac{2}{3}\displaystyle\int{\left(\dfrac{2x}{x^2+3}-\dfrac{9}{x^2+3}\;dx\right)}\Leftrightarrow

\Leftrightarrow\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2x+\dfrac{4}{3}\ln|x|-\dfrac{2}{3}\left(\displaystyle\int{\left(\dfrac{2x}{x^2+3}\;dx\right)}-\displaystyle\int{\left(\dfrac{9}{x^2+3}\;dx\right)}\right)\Leftrightarrow

\Leftrightarrow\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2x+\dfrac{4}{3}\ln|x|-\dfrac{2}{3}\left(\ln{(x^2+3)}-9\displaystyle\int{\left(\dfrac{1}{x^2+3}\;dx\right)}\right)

Tenha-se:

u=\dfrac{x}{\sqrt{3}}\;\longrightarrow\;\dfrac{du}{dx}=\dfrac{1}{\sqrt{3}}\Leftrightarrow dx=\sqrt{3}\;du

Logo,

    \displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2x+\dfrac{4}{3}\ln|x|-\dfrac{2}{3}\left(\ln|x^2+3|-9\displaystyle\int{\left(\dfrac{1}{x^2+3}\;dx\right)}\right)\Leftrightarrow

\Leftrightarrow\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2x+\dfrac{4}{3}\ln|x|-\dfrac{2}{3}\left(\ln|x^2+3|-9\displaystyle\int{\left(\dfrac{1}{3u^2+3}\sqrt{3}\;du\right)}\right)\Leftrightarrow

\Leftrightarrow\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2x+\dfrac{4}{3}\ln|x|-\dfrac{2}{3}\left(\ln|x^2+3|-9\displaystyle\int{\left(\dfrac{\sqrt{3}}{3u^2+3}\;du\right)}\right)\Leftrightarrow

\Leftrightarrow\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2x+\dfrac{4}{3}\ln|x|-\dfrac{2}{3}\left(\ln|x^2+3|-9\times\dfrac{\sqrt{3}}{3}\displaystyle\int{\left(\dfrac{1}{u^2+1}\;du\right)}\right)\Leftrightarrow

\Leftrightarrow\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2x+\dfrac{4}{3}\ln|x|-\dfrac{2}{3}\left(\ln|x^2+3|-3\sqrt{3}\arctan{u}\right)+C\Leftrightarrow

\Leftrightarrow\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2x+\dfrac{4}{3}\ln|x|-\dfrac{2}{3}\left(\ln|x^2+3|-3\sqrt{3}\arctan\left(\dfrac{x}{\sqrt{3}} \right)\right)+C\Leftrightarrow

\Leftrightarrow\displaystyle\int{\dfrac{-2x^3+4}{x(x^2+3)}\;dx}=-2x+\dfrac{4\ln|x|}{3}-\dfrac{2\ln|x^2+3|}{3}+2\sqrt{3}\arctan\left(\dfrac{x}{\sqrt{3}}\right)\right)+C

Por falta de espaço, podes encontrar os cálculos auxiliares no 1º anexo desta resposta.

Podes ver mais exercícios sobre Integrais em:

  • https://brainly.com.br/tarefa/46123433
  • https://brainly.com.br/tarefa/45961274
  • https://brainly.com.br/tarefa/36792214
Anexos:

Skoy: Tanta perfeição, vontade de chorar vendo essa obra-prima.
ShinyComet: Obgrigado ahahaha. Só tenho pena de não ter cabido tudo na resposta
Skoy: Eu fiz de uma forma totalmente diferente kalalakkdks. Mas sua resolução é muito mais bonita.
MuriloAnswersGD: Repsosta Incrível! Muito obrigado ! '0'
Katanaa: Resposta impecável!
Anônimo: MDS agora mudaram de nome antes era Bernardo// agora é ShinyComet
as0790689: oi tem como vc mim ajudar com a minha tarefa pfv
Perguntas similares