Respostas
Resposta:
Utilizando relações de semelhanças entre angulos, vemos que os angulos 'x' e 'y' são respectivamente 19º e 57º, letra C.
Explicação passo a passo:
uando temos duas retas paralelas cortadas por uma terceira reta concorrente, podemos encontrar relações entre os angulos que surgem das seguintes formas que usaremos:
"4x+47" e "3x" são angulos colaterais internos, ou seja, ambos estão do mesmo lado da reta transversal e dentro das retas paralelas, quando este fato ocorre, tais angulos são suplementares, ou seja, sua soma é igual a 180º:
4x + 47 + 3x = 180
E com isso podemos somar e isolar x:
7x + 47 = 180
7x = 180 - 47
7x = 133
x = 133 / 7
x = 19
Assim sabemos que o angulo 'x' vale 19º. Para descobrir 'y' é só usar o fato de que o angulo 'y' é oposto pelo vertice com o angulo de '3x' ou seja, estes são lados opostos e portanto são iguais:
y = 3x
Substituindo o valor de x:
y = 3 . 19
y = 57
E assim vemos que os angulos 'x' e 'y' são respectivamente 19º e 57º, letra C.
Para mais questões sobre angulos semelhantes, recomendo checar:
brainly.com.br/tarefa/23563882
brainly.com.br/tarefa/23648059