me ajudem :(
certa pista de atletismo, que possui 491,2 m de comprimento, foi representada de maneira simplificada pela figura a seguir, formado por dois segmentos de reta paralelos e duas semi conferências idênticas
qual é a área da região interna limitada por essa pista?
12 446m^2
12 464m^2
12 644m^2
14 624m^2
14 642m^2
Respostas
Resposta:
14 624 m²
Explicação passo a passo:
A região interna a pista é representada por um retângulo e duas semicircunferências idênticas.
Como o comprimento da pista vale 491,2 m e o retângulo tem dois lados medindo 120 m, temos que 120 x 2 = 240 m.
Logo, 491,2 - 240 = 251,2 m é o comprimento da pista representada pelas semicircunferências.
Como são duas semicircunferências, dividindo 251,2 m por 2, encontramos o comprimento de cada uma. 251,2 : 2 = 125,6 m
Para descobrir o raio da circunferência (que, consequentemente, tem o diâmetro igual a medida do lado desconhecido do retângulo), utilizaremos a fórmula do comprimento da circunferência (dividiremos por dois por se tratar de uma semicircunferência).
C =
125,6 = (Simplificando por 2)
125,6 = 3,14 . R
= R
40 m = R
Logo, descobrimos que as semicircunferências tem raio igual a 40 m e o lado desconhecido do retângulo mede 80 m (medida do diâmetro).
A área da região interna é dada por:
Espero ter ajudado.
Deixe seu like :)