• Matéria: Matemática
  • Autor: LucasLeandro155
  • Perguntado 3 anos atrás

Considere as matrizes A = 5 8 e B = 3 6 determine :
2 3 4 0


A + B

A - B

A . B

Respostas

respondido por: SotHangman
1

Resposta ↓

Matriz A + B ↓↓

\left[\begin{array}{ccc}5&8\\2&3\\ \end{array}\right] + \left[\begin{array}{ccc}3&6\\4&0\\ \end{array}\right] = \left[\begin{array}{ccc}8&14\\6&3\\ \end{array}\right]

Matriz A - B ↓↓

\left[\begin{array}{ccc}5&8\\2&3\\ \end{array}\right] - \left[\begin{array}{ccc}3&6\\4&0\\ \end{array}\right] = \left[\begin{array}{ccc}2&2\\-2&3\\ \end{array}\right]

Matriz A . B ↓↓

\left[\begin{array}{ccc}5&8\\2&3\\ \end{array}\right] . \left[\begin{array}{ccc}3&6\\4&0\\ \end{array}\right] = \left[\begin{array}{ccc}5.3+8.4&5.6+8.0\\2.3+3.4&2.6+3.0\\ \end{array}\right] = \left[\begin{array}{ccc}47&30\\18&12\\ \end{array}\right]

Explicação passo a passo:

⇒ Para calcularmos, efetuamos a adição, subtração e multiplicação:

=========================================================

✍ Cálculo:

Matriz A ↓↓

\left[\begin{array}{ccc}5&8\\2&3\\ \end{array}\right]

Matriz B ↓↓

\left[\begin{array}{ccc}3&6\\4&0\\ \end{array}\right]

Matriz A + B ↓↓

\left[\begin{array}{ccc}5&8\\2&3\\ \end{array}\right] + \left[\begin{array}{ccc}3&6\\4&0\\ \end{array}\right] = \left[\begin{array}{ccc}8&14\\6&3\\ \end{array}\right]

Matriz A - B ↓↓

\left[\begin{array}{ccc}5&8\\2&3\\ \end{array}\right] - \left[\begin{array}{ccc}3&6\\4&0\\ \end{array}\right] = \left[\begin{array}{ccc}2&2\\-2&3\\ \end{array}\right]

Matriz A . B ↓↓

\left[\begin{array}{ccc}5&8\\2&3\\ \end{array}\right] . \left[\begin{array}{ccc}3&6\\4&0\\ \end{array}\right] = \left[\begin{array}{ccc}5.3+8.4&5.6+8.0\\2.3+3.4&2.6+3.0\\ \end{array}\right] = \left[\begin{array}{ccc}47&30\\18&12\\ \end{array}\right]

Espero ter ajudado :)

Att: LDC

Anexos:

LucasLeandro155: Crânio
SotHangman: vlw
Perguntas similares