Respostas
respondido por:
1
Resposta:
1a−1−1a+1−2a²+1−4a⁴+1
= 1(a+1)(a−1)(a+1)−1(a−1)(a+1)(a−1)−2a²+1−4a⁴+1
= a+1a²−1−a−1a²−1−2a²+1−4a⁴+1
= a+1−(a−1)a²−1−2a²+1−4a⁴+1
= a+1−a+1)a²−1−2a²+1−4a⁴+1
= 2)a²−1−2a²+1−4a⁴+1
= 2(a²+1)(a²−1)(a²+1)−2(a²−1)(a²+1)(a²−1)−4a⁴+1
= 2a²+2(a²−1)(a²+1)−2a²−2(a²+1)(a²−1)−4a⁴+1
= 2a²+2−(2a²−2)a⁴−1−4a⁴+1
= 2a²+2−2a²+2a⁴−1−4a⁴+1
= 4a⁴−1−4a⁴+1
= 4(a⁴+1)(a⁴−1)(a⁴+1)−4(a⁴−1)(a⁴+1)(a⁴−1)
= 4a⁴+4a⁸−1−4a⁴−4a⁸−1
= 4a⁴+4−(4a⁴−4)a⁸−1
= 4a⁴+4−4a⁴+4a⁸−1
= 8a⁸−1
Explicação passo a passo:
: b
mariaclarax000:
obg
Perguntas similares
3 anos atrás
3 anos atrás
5 anos atrás
7 anos atrás
7 anos atrás