• Matéria: Matemática
  • Autor: nubiaponciano659
  • Perguntado 3 anos atrás

Um trinômio quadrado perfeito que pode representar a área do quadrado amarelo na figura abaixo é:
image

x²-6x+9

x²-3x-9

x²+3x+9
é a B ;}

Anexos:

iza1009: é a A
nubiaponciano659: a A, confundi
aperimdesouza: é a A
k3llvyn0l1: É a A mesmo obrigada a
inhami1: obrigado
marcosbebedaora3: Toda hora fazendo errar
guerralivia386: é a letra (A)
qqrnome123: é a A
biababebabe: (A)
lunaluizafranco78: que odio confiei e errei a questão aff

Respostas

respondido por: murilinhoribeiro507
49

Resposta:

cmsp: letra A

respondido por: mvdac
2

O trinômio do quadrado perfeito que representa a área do quadrado amarelo é x²- 6x + 9.

Observando a figura, sabemos que os lados do quadrado amarelo possuem medida igual a x - 3. Sabendo que a área do quadrado é calculada através da fórmula A = L², podemos afirmar que a área deste quadrado é calculada por:

A = L²

A = (x - 3)²

Sendo assim, aplicando a propriedade distributiva do quadrado da soma desse produto notável:

(x - 3)²

(x - 3) . (x - 3)

x² - 3x - 3x + 9

x² - 6x + 9

Chega-se a conclusão que o trinômio do quadrado perfeito que representa a área do quadrado amarelo é x² - 6x + 9.

Aprenda mais:

https://brainly.com.br/tarefa/20558338

Anexos:
Perguntas similares