Respostas
Resposta:
21 termos.
Explicação passo a passo:
Sendo a P.A, uma progressão aritmética finita, temos que a1=-6, an=-66. A razão é dada por r = a2-a1, em que a2=-9
Dessa forma: r = -9-(-6)
r = -9+6
r = -3
Para determinarmos o número de termos de uma P.A., utilizamos a seguinte fórmula:
an = a1+(n-1).r em que an é o último termo, a1 é o primeiro termo, n é o número de termos e r é a razão.
Substituindo:
-66 = -6+(n-1).(-3)
-66 = -6-3.n+3
-66 = -3-3.n
-3.n = -66+3
-3.n = -63
n = -63/-3
n = 21
A P.A. possui 21 termos.
Resposta:
N = 21 termos
Explicação passo a passo:
Determine o número de termos da P.A. (-6, -9,-12,...,-66)
r = a2 - a1 = - 9 - (-6) = - 9 + 6
r = - 3
an = - 66
a1 = - 6
an = a1 + (n-1).r
- 66 = - 6 + (n-1).(-3)
- 66+6= - 3n + 3
- 60 = - 3n + 3
3n = 3+60
3n= 63
N = 63/3
N = 21