• Matéria: Matemática
  • Autor: kauatavareskaka
  • Perguntado 3 anos atrás

Considere a expressão algébrica (x + 3)2 - 9.

Considerando as figuras a seguir, qual é a representação geométrica cuja área corresponde a essa expressão?

Anexos:

Respostas

respondido por: GeanMoura
12

Resposta:

Alternativa D.

Explicação passo a passo:

É uma questão mais de observação mas vou tentar explicar com um cálculo.

Nos quadrados (exceto na alternativa B), tem os polígonos com as seguintes áreas:

Retângulo:

a = (x × 3)

a = 3x

Quadrado-pequeno:

b = (3 × 3)

b = 9

Quadrado-grande:

c = (x × x)

c = x²

Sendo assim:

= (x + 3)² - 9

= x² + 6x + 9 - 9

= x² + 6x

= x² + 2(3x)

= c + 2a

A única alternativa que tem um quadrado-grande e dois retângulos é a D.


kauatavareskaka: ajuda nas 2 ultimas questoes minha la ze pfvvvvv
joaolemos22: obrigado
PIMBANALTON2018: 3²=9 meu jovem
GeanMoura: Quê?
respondido por: JucielbeGomes
5

Dentre as figuras apresentadas, aquela que representa a expressão algébrica (x + 3)² - 9 é mostrada na alternativa D)

A expressão (x + 3)² - 9 pode ser escrita da seguinte forma:

(x + 3)² - 9

x² + 2.3.x + 3² - 3²

x² + 6x

Logo devemos encontrar uma figura cuja área seja igual a x² + 6x.

Na alternativa D) temos um quadrado de área igual a x² e dois retângulos de áreas iguais a 3x cada.

Somando as áreas das figuras, temos: x² + 3x + 3x = x² + 6x

Esse valor corresponde a nossa expressão, logo a figura apresentada na alternativa D) possui área igual a (x + 3)² - 9.

Você pode aprender mais sobre expressões algébricas aqui:

https://brainly.com.br/tarefa/41588317

https://brainly.com.br/tarefa/46327378

Anexos:
Perguntas similares