• Matéria: Matemática
  • Autor: Jeannedepaula
  • Perguntado 3 anos atrás

Como achar dois pontos médios de um gráfico

Respostas

respondido por: giliardedeassisassis
1

O ponto médio de um segmento de reta é o ponto que separa o segmento em duas partes com medidas iguais.

O ponto médio separa o segmento de reta em duas partes com medidas iguais

O ponto médio separa o segmento de reta em duas partes com medidas iguais

O segmento de reta possui inúmeros pontos alinhados, mas somente um deles divide o segmento em duas partes iguais. A identificação e a determinação do ponto médio de um segmento de reta serão demonstrados com base na ilustração a seguir:

O segmento de reta AB possui um ponto médio (M) com as seguintes coordenadas (xM, yM). Observe que os triângulos AMN e ABP são semelhantes e possuem três ângulos iguais. Dessa forma, podemos aplicar a seguinte relação entre os segmentos que formam os triângulos. Veja:

AM = AN

AB AP

Podemos concluir que AB = 2 * (AM), considerando que M é o ponto médio do segmento AB.

AM = AN

2AM AP

AN = 1

AP 2

AP = 2AN

xP – xA = 2*(xM – xA)

xB – xA = 2*(xM – xA)

xB – xA = 2xM – 2xA

2xM = xB – xA + 2xA

2xM = xA + xB

xM = (xA + xB)/2

Por meio de um método análogo, conseguimos demonstrar que yM = (yA + yB )/2.

Portanto, considerando M o ponto médio do segmento AB, temos a seguinte expressão matemática para determinar as coordenadas do ponto médio de qualquer segmento no plano cartesiano:

Percebemos que o cálculo da abscissa xM é a média aritmética entre as abscissas dos pontos A e B. Assim, o cálculo da ordenada yM é a média aritmética entre as ordenadas dos pontos A e B.

Exemplos

→ Dadas as coordenadas dos pontos A(4,6) e B(8,10) pertencentes ao segmento AB, determine as coordenadas do ponto médio desse segmento.

XA = 4

yA = 6

xB = 8

yB = 10

xM = (xA + xB) / 2

xM = (4 + 8) / 2

xM = 12/2

xM = 6

yM = (yA + yB) / 2

yM = (6 + 10) / 2

yM = 16 / 2

yM = 8

As coordenadas do ponto médio do segmento AB são xM (6, 8).

→ Dados os pontos P(5,1) e Q(–2,–9), determine as coordenadas do ponto médio do segmento PQ.

XM = [5 + (–2)] / 2

xM = (5 – 2) / 2

xM = 3/2

yM = [1 + (–9)] / 2

yM = (1 – 9) / 2

yM = –8/2

yM = –4

Portanto, M(3/2, –4) é o ponto médio do segmento PQ.

Perguntas similares