• Matéria: Física
  • Autor: brendhale108
  • Perguntado 3 anos atrás

Um objeto cai de uma altura de 300 m com velocidade inicial igual a 0 m/s. Calcule a velocidade na qual ele chega ao chão. Use g = 10 m/s

URGENTEEEEEE​

Respostas

respondido por: NOmelegal3g
1

Resposta: 77,46 m/s

Explicação:

Basta aplicar os dados ofercidos na equação de torricelli: V²=Vo²+2.a.(Sf-Si)

V²=0+2.10.(300-0)

V²=20.300

V²=6000

V=\sqrt{6000}

V≅77,46ms/s

respondido por: LucasKM1604
1

Resposta:

20√15 m/s

Explicação:

O objeto está em queda livre, com aceleração (a) constante. Então sua velocidade é dada por:

v = v_{0} + a \cdot t

e sua posição:

\Delta S = v_{0} \cdot t + \frac{a \cdot t^{2}}{2}

Como a velocidade inicial é zero, a aceleração é a aceleração da gravidade (g) e o objeto cai de uma altura de 300 metros:

v_{0} = 0\\a = g = 10 \; m/s^{2}\\\Delta S = 300 \; metros

Usando a equação da posição para descobrir o tempo que o objeto demora pra chegar no chão (ou seja, percorrer os 300 metros):

300 = 0 \cdot t + \frac{g \cdot t^{2}}{2}\\\\300 = \frac{10 \cdot t^{2}}{2}\\\\300 = 5t^{2}\\\\t^{2} = 60\\\\t = 2\sqrt 15 \; segundos

Usando esse tempo na equação da velocidade:

v = 0 + g \cdot t\\v= g \cdot t\\v = 10 \cdot 2 \sqrt 15\\v = 20 \sqrt 15 \; m/s

Resposta: 20√15 m/s

Perguntas similares