• Matéria: Matemática
  • Autor: danielenathalham
  • Perguntado 3 anos atrás

Qual é a área de um triângulo cujo medidas possuem 16cm de base e 8 cm de altura?​

Respostas

respondido por: PhillDays
4

⠀⠀⠀☞ 64 [u.a.] ✅

⠀⠀⠀⭐⠀Para realizar este exercício vamos usar a equação para a área de um triângulo.⠀⭐⠀

                                         \qquad\LARGE\red{\boxed{\pink{\boxed{\begin{array}{lcr}\green{\star}&&\green{\star}\\&\!\!\orange{\bf A_t = \dfrac{b \cdot h}{2}}\!\!&\\\green{\star}&&\green{\star}\\\end{array}}}}}

\text{\Large\orange{$\diamond~~\bf A_t$}~\pink{$\Longrightarrow$}~} Área do triângulo em [unidades de área];

\text{\Large\orange{$\diamond~~\bf b$}~\pink{$\Longrightarrow$}~} Base do triângulo em [unidades de comprimento];

\text{\Large\orange{$\diamond~~\bf h$}~\pink{$\Longrightarrow$}~} Áltura do triângulo em [unidades de comprimento].

⠀⠀⠀➡️⠀Sendo assim temos:

\LARGE\blue{\text{$\sf A_t = \dfrac{16 \cdot 8}{2}$}}

\LARGE\blue{\text{$\sf A_t = 8 \cdot 8$}}  

                                  \huge\green{\boxed{\rm~~~\gray{A_t}~\pink{=}~\blue{ 64~[u.a.] }~~~}}

                  \setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\put(0,0){\line(1,0){2}}\put(0,0){\line(0,1){1}}\put(0,1){\line(2,-1){2}}\put(3,0){\line(1,0){2}}\put(3,0){\line(1,1){1}}\put(5,0){\line(-1,1){1}}\bezier{10}(4,1)(4,0.5)(4,0)\put(6,0){\line(1,0){2}}\put(6,0){\line(3,1){3}}\put(8,0){\line(1,1){1}}\bezier{10}(9,1)(9,0.5)(9,0)\put(0.9,-0.4){\sf b}\put(3.9,-0.4){\sf b}\put(-0.3,0.4){\sf h}\put(3.7,0.4){\sf h}\put(9.1,0.4){\sf h}\put(6.9,-0.4){\sf b}\put(1,-1){\vector(0,-1){1}}\put(4,-1){\vector(0,-1){1}}\put(7.5,-1){\vector(0,-1){1}}\put(0,-4){\line(1,0){2}}\put(0,-4){\line(0,1){1}}\put(0,-3){\line(2,-1){2}}\bezier{20}(0,-3)(1,-3)(2,-3)\bezier{10}(2,-4)(2,-3.5)(2,-3)\put(3,-4){\line(1,0){2}}\put(3,-4){\line(1,1){1}}\put(5,-4){\line(-1,1){1}}\bezier{20}(3,-3)(4,-3)(5,-3)\bezier{10}(5,-4)(5,-3.5)(5,-3)\bezier{10}(4,-4)(4,-3.5)(4,-3)\bezier{10}(3,-4)(3,-3.5)(3,-3)\put(6,-4){\line(1,0){2}}\put(6,-4){\line(3,1){3}}\put(8,-4){\line(1,1){1}}\bezier{10}(6,-4)(6,-3.5)(6,-3)\bezier{10}(9,-4)(9,-3.5)(9,-3)\bezier{30}(6,-3)(7.5,-3)(9,-3)\bezier{30}(6,-4)(7.5,-4)(9,-4)\put(3.3,-4.4){\sf b/2~~~b/2}\put(8.4,-4.4){\sf x}\put(1,-5){\vector(0,-1){1}}\put(4,-5){\vector(0,-1){2}}\put(7.5,-5){\vector(0,-1){4}}\put(0.2,-7){\text{$\sf A_t = \dfrac{b \cdot h}{2}$}}\put(2.5,-8){\text{$\sf A_t = \dfrac{b \cdot h}{4} + \dfrac{b \cdot h}{4} = \dfrac{b \cdot h}{2}$}}\put(4.7,-10){\text{$\sf A_t = \dfrac{(b+x) \cdot h}{2} - \dfrac{x \cdot h}{2} = \dfrac{b \cdot h}{2}$}}\end{picture}

                            \Large\red{\boxed{\begin{array}{rcl}&\green{\underline{\footnotesize\text{$\sf Esta~imagem~n\tilde{a}o~\acute{e}~visualiz\acute{a}vel~pelo~App~Brainly.$}}}&\\&\green{\footnotesize\text{$\sf \bullet~Experimente~compartilhar\rightarrow copiar~e~acessar$}}&\\&\green{\footnotesize\text{$\sf o~link~copiado~pelo~seu~navegador~ou~Browser.$}}&\\\end{array}}}

                             \bf\large\red{\underline{\quad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}

⠀⠀⠀☀️ L͎̙͖͉̥̳͖̭̟͊̀̏͒͑̓͊͗̋̈́ͅeia mais sobre área de triângulo:

                                     https://brainly.com.br/tarefa/49075701 ✈  

                                     \huge\blue{\text{\bf\quad Bons~estudos.}}

                                          \quad\qquad(\orange{D\acute{u}vidas\ nos\ coment\acute{a}rios})

                             \bf\large\red{\underline{\qquad \qquad \qquad \qquad \qquad \qquad \quad }\LaTeX}

                                \sf(\purple{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly} ☘☀❄☃☂☻)

                                                          \Huge\green{\text{$\underline{\red{\mathbb{S}}\blue{\mathfrak{oli}}~}~\underline{\red{\mathbb{D}}\blue{\mathfrak{eo}}~}~\underline{\red{\mathbb{G}}\blue{\mathfrak{loria}}~}$}}

Anexos:

PhillDays: @daniele, não se esqueça de avaliar (ícone estrela ⭐) as respostas e agradecer (ícone coração ❤️).

Ao escolher uma resposta como a melhor resposta (ícone coroa ♕ no App) você recupera 25% dos pontos ofertados de volta ($.$) e também ajuda outros usuários a economizarem tempo ⌛ indo direto para a resposta que você concluir que mais os ajudará ☺✌.
danielenathalham: ok
PhillDays: :)
Perguntas similares