• Matéria: Matemática
  • Autor: rkemoheros
  • Perguntado 3 anos atrás

1) Calcule os logaritmos.
a) log_{2} 256
b) log_{7} \frac{1}{49}
c) log5/2 \frac{125}{8}
d) log3/2 \frac{16}{81}
e) log 10.000
f) log_{256} 128
g) log8/27 \frac{16}{81}
h) log \sqrt[5]{100}
i) log_{0,5} 0,125

Respostas

respondido por: auditsys
1

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{a)\:log_2\:256 = log_2\:2^8 = 8}

\mathsf{b)\:log_7\:\dfrac{1}{49} = log_7\:7^{-2} = -2}

\mathsf{c)\:log_{\frac{5}{2}}\:\dfrac{125}{8} = log_{\frac{5}{2}}\left(\dfrac{5}{2}\right)^3 = 3}

\mathsf{d)\:log_{\frac{3}{2}}\:\dfrac{16}{81} = log_{\frac{3}{2}}\left(\dfrac{3}{2}\right)^{-4} = -4}

\mathsf{e)\:log\:10.000= log\:10^4 = 4}

\mathsf{f)\:log_{256}\:128 = log_{2^8}\:2^7 = \dfrac{7}{8}\:.\:log_2\:2 = \dfrac{7}{8}}

\mathsf{g)\:log_{\frac{8}{27}}\:\dfrac{16}{81} = log_{\frac{2^3}{3^3}}\left(\dfrac{2}{3}\right)^{4} = \dfrac{4}{3}\:.\:log_{\frac{2}{3}}\:\dfrac{2}{3} = \dfrac{4}{3}}

\mathsf{h)\:log\:\sqrt[5]{100} = log\:10^{\frac{2}{5}} = \dfrac{2}{5}}

\mathsf{i)\:log_{0,5}\:0,125 = log_{0,5}\:(0,5)^3 = 3}

respondido por: Leticia1618
1

Explicação passo-a-passo:

A)

 log_{2}(256)

 log_{2}(2 {}^{8} )

8

B)

 log_{7}( \dfrac{1}{49} )

 log_{7}(7 {}^{ - 2} )

-2

C)

 log_{ \frac{5}{2} }( \dfrac{125}{8} )

 log_{ \frac{5}{2} }(( \dfrac{5}{2} ) {}^{3} )

3

D)

 log_{ \frac{3}{2} }( \dfrac{16}{81} )

 log_{ \frac{3}{2} }(( \dfrac{3}{2}) {}^{ - 4}  )

-4

E)

 log_{10}(10000)

 log_{10}(10 {}^{4} )

4

F)

 log_{256}(128)

 log_{2 {}^{7} }(2 {}^{8} )

7/8

G)

 log_{ \frac{8}{27} }( \dfrac{16}{81} )

 log_{( \frac{2}{3}) {}^{3}  }(( \dfrac{2}{3}) {}^{4}  )

4/3

H)

 log_{10}( \sqrt[5]{100} )

 log_{10}(10 {}^{ \frac{2}{5} } )

2/5

I)

 log_{0.5}(0.125)

 log_{2 {}^{ - 1} }(2 {}^{ - 3} )

3

Perguntas similares