• Matéria: Matemática
  • Autor: cakezani34
  • Perguntado 3 anos atrás

Em uma fábrica, 3 máquinas, todas de mesma capacidade de produção e trabalhando sem interrupções, produzem, juntas, um lote de peças em 1 hora e 38 minutos. Utilizando-se somente 2 dessas máquinas, o tempo necessário para produzir esse mesmo lote de peças será de:
(A) 2 horas e 27 minutos.
(B) 2 horas e 32 minutos.
(C) 2 horas e 36 minutos.
(D) 2 horas e 41 minutos.
(E) 2 horas e 45 minutos.

Respostas

respondido por: gabrieltalles00
0

✔️ Tendo conhecimento das práticas matemáticas relacionadas à razão entre valores, temos que o tempo necessário será de 2 horas e 24 minutos (nenhuma das alternativas).

Razão entre valores

Matematicamente, razão é o quociente de uma divisão entre dois valores, que nada mais é do que um valor em comum atribuído àqueles dois valores. Ela pode ser classificada como:

Diretamente proporcional

Razão onde os valores alteram-se proporcionalmente, isto é, se alteramos um número, o outro deve ser alterado igualmente. Exemplo:

\Large\displaystyle\text{$\mathrm{\dfrac{\: kg \:}{\: R\$ \:} \: \rightarrow}$} \: Conforme o número de kg aumenta, o de R$ também aumenta.

Inversamente proporcional

Razão onde os valores alteram-se inversamente, isto é, se alteramos um número, o outro deve ser alterado da forma oposta. Exemplo:

\Large\displaystyle\text{$\mathrm{\dfrac{\: Pedreiros \:}{\: Dias \:} \: \rightarrow}$} \: Conforme o número de pedreiros aumenta, o número de dias de trabalho diminui.

Resolução do exercício

Primeiramente, descobrimos a razão entre o tempo e as máquinas: quanto tempo cada máquina gasta? Veja o cálculo abaixo:

\Large\displaystyle\text{$\mathrm{\dfrac{\: 1,38 \:}{\: 3 \:} \: = \: 0,46}$}

Em seguida, aplicamos a proporcionalidade inversa: retirando uma máquina, adicionamos o tempo que ela gastava de volta ao tempo principal. Veja o cálculo abaixo:

\Large\displaystyle\text{$\mathrm{1,38 + 0,46 \: = \: 1,84}$}

1 hora possui 60 minutos, logo sobraram 24 minutos em 1,84, configurando 2 horas e 24 minutos. Assim, temos que o tempo necessário será de 2 horas e 24 minutos.

Observação: Verifique se não há nenhum erro de digitação nas alternativas propostas, pois o valor obtido não coincide.

Saiba mais em

• brainly.com.br/tarefa/3897498

• brainly.com.br/tarefa/40192161

• brainly.com.br/tarefa/44417013

• brainly.com.br/tarefa/12484847

Anexos:
Perguntas similares