• Matéria: Matemática
  • Autor: josuemouradacruz
  • Perguntado 3 anos atrás

Calcule a soma dos 24 primeiros termos de cada PA
a)(-57,-27,3,...)
b)(2/3,8/3,14/3,...)
c)(7,7,7,...)
d)(-1/2,-1/4,0,...)

Respostas

respondido por: Helvio
1

\large\text{$ a) ~A~ soma ~dos ~24 ~primeiros ~termos ~da ~PA    ~ \Rightarrow ~  S24 = 6912$}

\large\text{$ b) ~A~ soma ~dos ~24 ~primeiros ~termos ~da ~PA    ~ \Rightarrow ~   S24 = 568$}

\large\text{$ c) ~A~ soma ~dos ~24 ~primeiros ~termos ~da ~PA    ~ \Rightarrow ~    S24 = 168$}

\large\text{$ d) ~A~ soma ~dos ~24 ~primeiros ~termos ~da ~PA    ~ \Rightarrow ~    S24 = 57$}

                                  \Large\text{$ Progress\tilde{a}o ~Aritm\acute{e}tica $}

a)

Encontrar a razão da PA:

r = a2 - a1\\\\r = -27 - ( - 57)\\\\r = -27 + 57\\\\r = 30

Encontrar o valor do termo a24

an =  a1 + ( n -1 ) . r\\\\a24 = -57 + ( 24 -1 ) . 30\\\\a24 = -57 + 23 . 30\\\\a24 = -57 + 690\\\\a24 = 633\\\\

Soma dos termos:

Sn = ( a1 + an ) ~. ~n ~/~  2\\\\ S24 = ( -57 + 633 )~ . ~24~ /~  2 \\\\ S24 = 576~ . ~12\\\\ S24 = 6912  

===

b)

Encontrar a razão da PA:

r = a2 - a1\\\\r = \dfrac{8}{3} - \dfrac{2}{3}\\\\\\ r = 2

Encontrar o valor do termo a24:

an =  a1 + ( n -1 ) . r\\\\\\a24 = \dfrac{2}{3} + ( 24 -1 ) ~. ~2\\\\\\	a24 = \dfrac{2}{3} + 23~ . ~2\\\\\\	a24 = \dfrac{2}{3} + 46\\\\\\a24 = \dfrac{140}{3}  

Soma dos termos:

Sn = ( a1 + an ) . n /  2\\\\\\ S24 = ( \dfrac{2}{3} +  \dfrac{140}{3} )~ . ~24~ /~  2 \\\\\\ S24 =  \dfrac{142}{3}~ .~ 12\\\\\\ S24 = 568

===

c)

Encontrar a razão da PA:

r = a2 - a1\\\\r =  7 - 7\\\\r = 0

Encontrar o valor do termo a24:

an =  a1 + ( n -1 ) . r\\\\a24 = 7 + ( 24 -1 ) . 0\\\\a24 = 7 + 23 . 0\\\\a24 = 7 + 0\\\\a24 =7

Soma dos termos

Sn = ( a1 + an )~ . ~n~ /~  2\\\\ S24 = ( 7 + 7 )~ .~ 24~ /~  2\\\\ S24 = 14 ~.~ 12\\\\ S24 = 168  

===

d)

Encontrar a razão da PA:

r = a2 - a1\\\\r = -\dfrac{1}{4} - ( -\dfrac{1}{2} )\\\\\\r = -\dfrac{1}{4} + \dfrac{1}{2}\\\\\\r = \dfrac{1}{4}

Encontrar o valor do termo a24:

an =  a1 + ( n -1 ) . r\\\\\\a24 =  -\dfrac{1}{2}  + ( 24 -1 )~ .~  \dfrac{1}{4} \\\\\\	a24 = -\dfrac{1}{2}  + 23 ~.~\dfrac{1}{4} \\\\\\	a24 =  -\dfrac{1}{2}  + \dfrac{23}{4} \\\\\\	a24 = \dfrac{21}{4}  

Soma dos termos:

Sn = ( a1 + an )~ .~ n~ / ~ 2\\\\\\ S24 = ( -\dfrac{1}{2}  +  \dfrac{21}{4}  ) ~. ~24~ /~  2 \\\\\\ S24 =  \dfrac{19}{4}~  . ~12\\\\\\ S24 = 57  

===

Para saber mais:

https://brainly.com.br/tarefa/49407123

https://brainly.com.br/tarefa/49411672

https://brainly.com.br/tarefa/49364756

Anexos:
Perguntas similares