• Matéria: Matemática
  • Autor: Paaulo
  • Perguntado 9 anos atrás

 \int\limits^2_0 { x^{2}  \sqrt{ x^{3}+1 } } \, dx
alguem resolve pra min

Respostas

respondido por: Lukyo
1
Calcular a integral definida:

I=\displaystyle\int\limits_{0}^{2}{x^{2}\sqrt{x^{3}+1}\,dx}\\\\\\ =\dfrac{1}{3}\int\limits_{0}^{2}{3x^{2}\sqrt{x^{3}+1}\,dx}\\\\\\ =\dfrac{1}{3}\int\limits_{0}^{2}{\sqrt{x^{3}+1}\cdot 3x^{2}\,dx}~~~~~~\mathbf{(i)}


Fazendo a seguinte mudança de variável:

x^{3}+1=u~~\Rightarrow~~3x^{2}\,dx=du


Mudando os extremos de integração:

\text{Quando }x=0~~\Rightarrow~~u=1\\\\ \text{Quando }x=2~~\Rightarrow~~u=9


Substituindo em \mathbf{(i)}, a integral fica

I=\dfrac{1}{3}\displaystyle\int\limits_{1}^{9}{\sqrt{u}\,du}\\\\\\ =\dfrac{1}{3}\int\limits_{1}^{9}{u^{1/2}\,du}\\\\\\ =\dfrac{1}{3}\cdot \left.\left(\dfrac{u^{1/2+1}}{\frac{1}{2}+1} \right )\right|_{1}^{9}\\\\\\ =\dfrac{1}{3}\cdot \left.\left(\dfrac{u^{3/2}}{\frac{3}{2}} \right )\right|_{1}^{9}\\\\\\ =\dfrac{1}{3}\cdot \left.\left(\dfrac{2}{3}\,u^{3/2} \right )\right|_{1}^{9}\\\\\\ =\dfrac{2}{9}\cdot \left.\left(u^{3/2} \right )\right|_{1}^{9}

=\dfrac{2}{9}\cdot \left(9^{3/2}-1^{3/2} \right )\\\\\\ =\dfrac{2}{9}\cdot (27-1)\\\\\\ =\dfrac{2}{9}\cdot 26\\\\\\ =\dfrac{52}{9}

\therefore~~\boxed{\begin{array}{c} \displaystyle\int\limits_{0}^{2}{x^{2}\sqrt{x^{3}+1}\,dx}=\dfrac{52}{9} \end{array}}

Perguntas similares