• Matéria: Matemática
  • Autor: dedezonq3
  • Perguntado 3 anos atrás

Qual é a soma dos ângulos internos de um octógono?​

Anexos:

Respostas

respondido por: franciscosuassuna12
1

Resposta:

1.080⁰

Explicação passo-a-passo:

si = (n - 2).180 = (8 - 2).180 = 6.180 = 1.080 {}^{0}

respondido por: Math739
1

A soma dos ângulos internos de um polígono é dada pela fórmula:

\Large\displaystyle\text{$\begin{gathered} \sf S_i = (n - 2) \cdot180 {}^{ \circ} \end{gathered}$}

Onde:

\Large\displaystyle\text{$\begin{gathered}  \begin{cases}  \sf S_i = soma \,dos\, \hat{a}ngulos \, internos=? \\  \sf n = n\acute{u}mero \,de\, lados  = 8\end{cases}\end{gathered}$}

Calculando a soma dos ângulos internos de um octógono pela fórmula temos que:

\Large\displaystyle\text{$\begin{gathered}  \sf S_i = (n - 2) \cdot180 {}^{ \circ} \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf S_i = (8 -2) \cdot180 {}^{ \circ}  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf S_i = 6 \cdot180 {}^{ \circ}  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf S_i = 1080 {}^{ \circ}  \end{gathered}$}

Portanto, a soma dos ângulos internos de um octógono é:

\Large\displaystyle\text{$\begin{gathered}  \boxed{ \boxed{\bf  1080  {}^{ \circ}  }} \end{gathered}$}

Perguntas similares