• Matéria: Matemática
  • Autor: mcmfreitas77
  • Perguntado 3 anos atrás

Sendo f(x, y , z) = (0, cos xz, - sen xy) um campo vetorial, determine o seu rotacional.

Respostas

respondido por: Skoy
17
  • Seu rotacional será:

\large\displaystyle\text{$\begin{gathered}rot F=(-x\cos(xy)+ x\sin(xz) ) \vec{i}+y\cos (xy)\ \vec{j}-z\sin(xz)  \vec{k}\end{gathered}$}

Desejamos encontrar o rotacional do campo vetorial f(x, y , z) = (0, cos xz, - sen xy).

Considere um campo vetorial: \large\displaystyle\text{$\begin{gathered} f(x,y,z)=A\cdot \vec{i}+B\cdot \vec{j}+C\cdot \vec{k}\end{gathered}$}. Seu rotacional será definido por: \large\displaystyle\text{$\begin{gathered} rot F=\vec{\nabla}\times F\end{gathered}$}. Sendo que:

                \large\displaystyle\text{$\begin{gathered}rot F=\left[\begin{array}{ccc}\vec{i}&\vec{j}&\vec{k}\\\frac{\partial}{\partial x} &\frac{\partial}{\partial y} &\frac{\partial}{\partial z} \\A&B&C\end{array}\right]  \end{gathered}$}

Sendo dado no enunciado o campo vetorial f(x, y , z) = (0, cos xz, - sen xy). Logo, seu rotacional será dado por:

       \large\displaystyle\text{$\begin{gathered}rot F=\left|\begin{array}{ccc}\vec{i}&\vec{j}&\vec{k}\\\frac{\partial}{\partial x} &\frac{\partial}{\partial y} &\frac{\partial}{\partial z} \\0&cosxz&-senxy\end{array}\right|  \end{gathered}$}

  • Para resolver, irei utilizar a regra de sarrus. Logo:

\large\displaystyle\text{$\begin{gathered}rot F=\left|\begin{array}{ccc}i&j&k\\\frac{\partial}{\partial x} &\frac{\partial}{\partial y} &\frac{\partial}{\partial z} \\0&cosxz&-senxy\end{array}\right| \left|\begin{array}{ccc}i&j\\\frac{\partial}{\partial x} &\frac{\partial}{\partial y} \\0&cosxz\end{array}\right| \end{gathered}$}

\large\displaystyle\text{$\begin{gathered}rot F=\left(\frac{\partial}{\partial y}(-\sin xy)\vec{i} +\frac{\partial }{\partial z}(0)\vec{j}+\frac{\partial}{\partial x}(\cos xz)\vec{k}\right)-...\end{gathered}$}

         \large\displaystyle\text{$\begin{gathered}...\left(\frac{\partial}{\partial y}(0)\vec{k}+ \frac{\partial}{\partial z}(\cos xz)\vec{i}+\frac{\partial}{\partial x}(-\sin xy)\vec{j}\right)\end{gathered}$}

\large\displaystyle\text{$\begin{gathered}rot F=\left((-x\cos (xy))\vec{i}+(-z\sin (xz))\vec{k}\right)-...\end{gathered}$}

             \large\displaystyle\text{$\begin{gathered}...-\left( (-x\sin(xz))\vec{i}+(-y\cos (xy))\vec{j}\right)\end{gathered}$}

\large\displaystyle\text{$\begin{gathered}rot F=-x\cos(xy) \vec{i}-z\sin(xz)  \vec{k}+ x\sin(xz) \vec{i}+y\cos (xy)\ \vec{j}\end{gathered}$}

Podemos então colocar em evidência os termos. Ficando por final:

\large\displaystyle\text{$\begin{gathered}rot F=-x\cos(xy) \vec{i}-z\sin(xy)  \vec{k}+ x\sin(xz) \vec{i}+y\cos (xy)\ \vec{j}\end{gathered}$}

\large\displaystyle\text{$\begin{gathered}rot F=(-x\cos(xy)+ x\sin(xz) ) \vec{i}-z\sin(xz)  \vec{k}+y\cos (xy)\ \vec{j}\end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\therefore \boxed{\boxed{\green{rot F=(-x\cos(xy)+ x\sin(xz) ) \vec{i}+y\cos (xy)\ \vec{j}-z\sin(xz)  \vec{k}}}}\ \checkmark\end{gathered}$}

Veja mais sobre:

  • brainly.com.br/tarefa/49490131
  • brainly.com.br/tarefa/38625973
Anexos:
Perguntas similares