Carlos colocou 3 pontos (A, B e C) em uma malha quadriculada de lado medindo 1cm. 2. Determinar o perímetro do triângulo formado pela união das 3 vértices:
Anexos:
Respostas
respondido por:
0
Resposta:
O perímetro do triângulo ABC vale (√29 + 2√13 + √17) cm.
Explicação passo a passo:
O perímetro de um triângulo ABC é dado pela soma dos segmentos AB + AC + BC.
Observe na figura abaixo que:
AB é hipotenusa de um triângulo retângulo de catetos 2 e 5.
AB² = 2² + 5²
AB² = 4 + 25
AB = √29
AC é hipotenusa de um triângulo retângulo de catetos 6 e 4.
AC² = 6² + 4²
AC² = 36 + 16
AC = 2√13
BC é hipotenusa de um triângulo retângulo de catetos 1 e 4.
BC² = 1² + 4²
BC² = 1 + 16
BC = √17
Dessa forma o perímetro é 2P = (√29 + 2√13 + √17) cm ou aproximadamente 16,72cm.
Anexos:
Perguntas similares
3 anos atrás
3 anos atrás
3 anos atrás
5 anos atrás
5 anos atrás
7 anos atrás