• Matéria: Matemática
  • Autor: geylson1
  • Perguntado 9 anos atrás

Alguém pode me da uma força nessa questão?


Encontre o divergente e o rotacional dos campo vetorial:



V(x, y, z)= 3xi + 2yj - 3zk

Respostas

respondido por: carlosmath
2
Hallemos div V

\text{div } V=\dfrac{\partial V_1}{\partial x}+\dfrac{\partial V_2}{\partial y}+\dfrac{\partial V_3}{\partial z}\\ \\ \\
\text{div } V=\dfrac{\partial (3x)}{\partial x}+\dfrac{\partial (2y)}{\partial y}+\dfrac{\partial (-3z)}{\partial z}\\ \\ \\
\text{div } V=3+2-3\\ \\ \\
\text{div } V=2

Hallemos el rotacional

\text{rot }V=\left|
\begin{matrix}
i&j&k\\
\partial_x&\partial_y&\partial_z\\
3x&2y&-3z
\end{matrix}\right|\\ \\ \\
\text{rot }V=\left(\dfrac{\partial}{\partial y}(-3z)-\dfrac{\partial}{\partial z}(2y)\right)i-\left(\dfrac{\partial}{\partial x}(-3z)-\dfrac{\partial}{\partial z}(3x)\right)j+\\ \\
+\left(\dfrac{\partial}{\partial x}(2y)-\dfrac{\partial}{\partial y}(3x)\right)k\\ \\ \\
\text{rot }V=0i-0j+0k\\ \\ \\
\text{rot }V=(0,0,0)




geylson1: ¡muy agradecido!
Perguntas similares