• Matéria: Matemática
  • Autor: Luisfariasa
  • Perguntado 3 anos atrás

Sabendo que existem os conjuntos A = {1, 2, 3} e B = {-1, 0,
1, 2, 3, 4, 5, 6} com F: A B e F(x) = 2x – 1. Calcular domínio, contra
domínio e imagem da função.
(necessito urgentemente.)

Respostas

respondido por: sofia1250
1

Resposta:

Dada uma função qualquer, o domínio é formado pelos valores que o x pode assumir. Na maioria das vezes, trabalhamos a função que vai de R em R, ou seja, o domínio é o conjunto dos números reais e o contradomínio também, entretanto, pode ser que haja algumas restrições para o domínio.

Exemplo 1:

Vamos começar com um exemplo mais simples, essa função f(x) = 2x f: A → B, A = {1, 2, 3, 4, 5} e B ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Nesse caso o domínio da função D(f): {1, 2, 3, 4, 5}.

Agora, analisando a lei de formação e pensando em uma função R → R, eliminaremos as possíveis restrições do domínio, por exemplo, se a função possuir a lei de formação:

Note que o x não pode ser igual a 0, já que isso causaria uma indeterminação, pois não é possível dividir 1 por 0. Nesse caso o domínio da minha função não pode ser 0, então o D(f) = R* (conjunto dos números reais não nulos).

Outro exemplo bastante comum são funções com radical. Quando trabalhamos com raiz quadrada, os valores que estão dentro da raiz não podem ser negativos, pois estamos trabalhando com números reais, e, no conjunto dos números reais, não existe raiz quadrada para números negativos, o que justifica a criação posteriormente do conjunto dos números complexos. Vamos analisar um exemplo de função com radical e determinar seu domínio.

Exemplo 2:

Note que, nesse caso, x – 10 precisa ser maior ou igual a zero já que não existe raiz quadrada de números negativos no conjunto dos números reais:

Veja também: Determinando o domínio de uma função

Contradomínio

Como vimos, o contradomínio de uma função f: A → B é o conjunto B. O contradomínio que mais trabalhamos é o conjunto dos números reais. É importante lembrarmo-nos de que no domínio todo elemento tem que ter necessariamente um correspondente no contradomínio, porém não há uma restrição para o contradomínio, logo, o conjunto pode ter elementos que não sejam correspondentes de ninguém no domínio, um exemplo seria a função f(x) = x² com f: R → R.

Note que por mais que nessa função a imagem nunca seja negativa, ou seja, para todo valor de x, x² é sempre um número positivo, ainda sim o contradomínio pode ser os números reais. Ter um resultado sempre positivo faz com que a imagem seja sempre um número positivo, o que não altera o contradomínio.

Explicação passo a passo:

Perguntas similares