• Matéria: Matemática
  • Autor: juliacg436
  • Perguntado 3 anos atrás

Em uma cidade h a 3 clubes: A , B e C . Em um grupo de 1.000 famílias constatou-se que 450 são sócias do Clube A ; 460 são sócias do Clube B ; 340 são sócias do Clube C ; 120 são sócias dos Clubes A e B ; 210 são sócias dos Clubes A e C ; 160 são sócias dos Clubes B e C e 50 são sócias dos 3 clubes. Escolhendo-se uma família ao acaso, qual a probabilidade de que ela seja sócia de exatamente dois clubes? E de pelo menos um clube? E de apenas um clube? E de pelo menos dois clubes?

Respostas

respondido por: williamcanellas
1

Resposta:

As probabilidades pedidas são, respectivamente, 33%, 18%, 43% e 39%.

Explicação passo a passo:

Para responder esta questão podemos recorrer a definição de probabilidade (destacando expressões como: exatamente, pelo menos, apenas,...) e ao Diagrama de Venn completando-o com os dados do enunciado conforme a figura abaixo.

  • Qual a probabilidade de a pessoa escolhida ser sócia de exatamente dois clubes?

Pelo diagrama podemos ver que o total de pessoas que são sócias de exatamente dois clubes são:

70 + 160 + 110 = 330, portanto

P(A) = 330/1000 = 33/100 = 33%

  • É sócia de pelo menos um clube?

Significa que a pessoa a ser escolhida pode ser sócia de um, dois ou dos três clubes, ou seja, só não serve não ser sócia de nenhum. Assim, a probabilidade será dada por:

P(B) = 180/1000 = 18/100 = 18%

  • É sócia de apenas um clube?

Novamente, pelo diagrama podemos ver que o total de pessoas que são sócias de apenas um dos clubes é dado por:

170 + 230 + 30 = 430

P(C) = 430/1000 = 43/100 = 43%

  • É sócia de pelo menos dois clubes?

Significa que pode ser sócia de dois ou de três clubes, assim, temos:

160 + 70 + 110 + 50 = 390 e cuja probabilidade é dada por:

P(D) = 390/1000 = 39/100 = 39%

Anexos:

juliacg436: O conjunto universo é 190: 810-190 e onde está o valor 30 é 20. Obrigado pela ajuda!
juliacg436: Na vdd é 1000-810=190...rs
Perguntas similares