• Matéria: Matemática
  • Autor: roberthlimah
  • Perguntado 9 anos atrás

O resultado da integral é:

Anexos:

Respostas

respondido por: Lukyo
0
\displaystyle\mathsf{\int\limits_{-2}^{2}3\sqrt{3x+7}\,dx}\\\\\\ =\mathsf{\int\limits_{-2}^{2}\sqrt{3x+7}\cdot 3\,dx}~~~~~~\mathbf{(i)}


Fazendo a seguinte mudança de variável:

\mathsf{3x+7=u~~\Rightarrow~~3\,dx=du}


Mudando os extremos de integração:

\mathsf{Quando~~x=-2~~\Rightarrow~~u=1}\\\\ \mathsf{Quando~~x=2~~\Rightarrow~~u=13}


Substituindo em \mathbf{(i)}, a integral fica

\displaystyle\mathsf{=\int\limits_{1}^{13}\sqrt{u}\,du}\\\\\\ \mathsf{=\int\limits_{1}^{13}u^{1/2}\,du}\\\\\\ \mathsf{=\left.\left(\dfrac{u^{(1/2)+1}}{\frac{1}{2}+1} \right )\right|_{1}^{13}}\\\\\\ \mathsf{=\left.\left(\dfrac{u^{3/2}}{\frac{3}{2}} \right )\right|_{1}^{13}}\\\\\\ \mathsf{=\left.\left(\dfrac{2}{3}\,u^{3/2} \right )\right|_{1}^{13}}\\\\\\ \mathsf{=\dfrac{2}{3}\cdot (13^{3/2}-1^{3/2})}\\\\\\ \mathsf{=\dfrac{2}{3}\left(13\sqrt{13}-1\right)}


Resposta: alternativa \mathsf{e.~~\dfrac{2}{3}\left(13\sqrt{13}-1\right).}

Perguntas similares