• Matéria: Matemática
  • Autor: aurifeitosa
  • Perguntado 9 anos atrás

Se x= 0,22222.... e y= 2,595959...., calcule o valor da soma dos algarismos do numerador da fração x.y

por favor coloque todos os procedimentos

Respostas

respondido por: MatheusAlves97
9
Ok, vamos la!
 
 Olha não é tão dificil o quanto parece, primeiramente você tem que transformar essas dízimas em fração,ou seja, encontrar a fração geratriz dela, então faça o seguinte:
 Para o numerador: repete todo o numero até chegar no periodo e subtrai fazendo a mesma coisa, repetindo os numeros antes do perído.
 Para o denominador: coloca o numero 9 para cada numero que compõe o período e acrescenta-se um zero para cada que não faz parte do período. então para o 0.2222... ficará:
   02-0/9=2/9 
e para o 2.5959... ficará: 259-2/99= 257/99
 Agora é só fazer o que ta pedindo que é x.y: 
2/9.257/99 = 524/891
 Enfim soma os algarismos do numerador: 5+2+4= 10
 
Pronto =).

  

LuGianto: Toda a operação do outro comentário esta certa, mas se você for reparar 257 x 2 = 514 e não 524, tanto é que 5+2+4= 11 e o valor real é: 5+1+4 = 10
respondido por: guilhermeRL
3

Bom Dia!

____________________________________________________

Pra resolver essa questão é necessário que você observe bem o enunciado, perceba que ele quer ter como resposta a soma dos algarismos do numerador.

  • Quem é denominador e numerador?

\frac{A\mathrm{(numerador)}}{B\mathrm{(Denominador)}}

____________________________________________________

Em busca da fração geratriz de (X):

→ Temos uma dizima simples.

→ Período = 2

x=0,222...

x·(10)=0,222...·(10)

10x=2,222...

10x-x=2,222...-0,222...

9x=2

x=2/9

____________________________________

Em busca da fração geratriz de (Y):

→ Temos uma dizima simples.

→ Período = 59

(x=2,5959...) é o mesmo que  (x=2+0,5959...)

Em busca da fração geratriz de 0,5959...

x=0,5959...

x·(100)=0,5959...·(100)

100x=59,5959...

100x-x=59,5959...-0,5959...

99x=59

x=59/99

Agora somamos ao 2 que separamos no inicio:

Y=59/99+2 (mmc entre 1 e 99 = 99)

Y=59/99+198/99

Y=257/99

____________________________________

Qual o resultado de (X·Y)?

{=2/9

{y=257/99

X·Y

2/9·257/99 → 514/891

____________________________________

  • O enunciado busca saber a soma dos algarismos do numerador da fração formada pela multiplicação de X por Y.

514(numerador)/891(denominador)

Resolução do problema:

\mathrm{5+4+1=}\boxed{\boxed{10}}}}

____________________________________________________

Att;Guilherme Lima

#CEGTI#GERATRIZ#DIZIMAPERIODICA  

Perguntas similares