Respostas
Resposta:
1.
a) 4x²+4x+1
b) x²+6x+9
c) 9x²-12x+4
d) x²-10x+25
e) 4x²+12x+9
2.
a) x²+3x+5 = 0
b) x = 0; -2
c)
d)
e) x²+1 = 3x
f) x = \|1,5
Explicação:
1.
a) (2x+1)² =
(2x+1)×(2x+1) =
[2x×2x]+[2x×1]+[1×2x]+[1×1] =
4x²+2x+2x+1 =
4x²+4x+1
b) (x+3)² =
(x+3)×(x+3) =
[x×x]+[x×3]+[3×x]+[3×3] =
x²+3x+3x+9 =
x²+6x+9
c) (3x-2)² =
(3x-2)×(3x-2) =
[3x×3x]+[3x×(-2)]+[-2×3x]+[-2×(-2)] =
9x²+(-6x)+(-6x)+4 =
9x²-6x-6x+4 =
9x²-12x+4
d) (x-5)² =
(x-5)×(x-5) =
[x×x]+[x×(-5)]+[-5×x]+[-5×(-5)] =
x²+(-5x)+(-5x)+25
x²-5x-5x+25 =
x²-10x+25
e) (2x+3)² =
(2x+3)×(2x+3) =
[2x×2x]+[2x×3]+[3×2x]+[3×3] =
4x²+6x+6x+9 =
4x²+12x+9
2.
a) x²+3x+5 = 0
b) x²+2x = 0
x²+2x-0 = 0
Δ = 2²-4×1×(-0)
Δ = 4-4×1×(-0)
Δ = 4-4×(-0)
Δ = 4+0
Δ = 4
x = -2+-\|4/2×1
x = -2+-2/2×1
x = -2+-2/2
x = -2+2/2
x = 0/2
x = 0
x = -2-2/2
x = -4/2
x = -2
c) 2x²+1 = 0
2x² = 0-1
2x² = -1
x² = -1÷2
x² = -0,5
d) 3x²+5x = 1
3x²+5x-1 = 0
Δ = 5²-4×3×(-1)
Δ = 25-4×3×(-1)
Δ = 25-12×(-1)
Δ = 25+12
Δ = 37
e) x²+1 = 3x
x² = 3x-1
x²-3x+1 = 0
Δ = (-3)²-4×1×1
Δ = 9-4×1×1
Δ = 9-4×1
Δ = 9-4
Δ = 5
f) 2x²-3 = 0
2x² = 0+3
2x² = 3
x² = 3÷2
x² = 1,5
x = \|1,5