• Matéria: Matemática
  • Autor: MarceloAlvesx7
  • Perguntado 3 anos atrás

Determine a transformada inversa de Laplace de F(s) = 4/(s+4).

Respostas

respondido por: Skoy
15
  • A transformada inversa de Laplace da função F(s) é igual a:

       \Large\displaystyle\text{$\begin{gathered} \mathcal{L}^{-1} \left\{ \frac{4}{s+4} \right\} = 4e^{-4t}\end{gathered}$}

Desejamos calcular a transformada inversa de Laplace da função F(s) = 4/(s+4). Para isso, vale ressaltar a transformada da exponencial, dada por

      \Large\displaystyle\text{$\begin{gathered} \boxed{\mathcal{L} \left\{ e^{\phi t}\right\} = \frac{1}{s -\phi}}   \end{gathered}$}

Podemos ainda provar essa transformada ou pela definição, Sendo

 \Large\displaystyle\text{$\begin{gathered} \mathcal{L} \left\{ e^{\phi t}\right\} = \int _{0^+}^{\infty} e^{\phi t} \cdot e^{-st} dt   \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \mathcal{L} \left\{ e^{\phi t}\right\} = \int _{0^+}^{\infty} e^{\phi t -st} dt   \end{gathered}$}

Chamando então u = \phi t -st , du = ( \phi -s )dt , temos

\Large\displaystyle\text{$\begin{gathered} \mathcal{L} \left\{ e^{\phi t}\right\} = \frac{1}{\phi -s} \cdot\int _{0^+}^{\infty} e^{u} du   \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \mathcal{L} \left\{ e^{\phi t}\right\} = \frac{1}{\phi -s} \cdot \left( e^{\phi t-st} \right)\bigg|_{0^+}^{\infty}  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \mathcal{L} \left\{ e^{\phi t}\right\} = \frac{1}{\phi -s} \cdot \left(e^{\phi \cdot  \infty-s\cdot \infty } - e^{\phi \cdot 0 - s\cdot 0}\right)   \end{gathered}$}

Pela propriedade da multiplicação de bases iguais, temos que

\Large\displaystyle\text{$\begin{gathered} \mathcal{L} \left\{ e^{\phi t}\right\} = \frac{1}{\phi -s} \cdot \left(e^{\phi \cdot  \infty }\cdot \frac{1}{\infty }- 1\right)   \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \mathcal{L} \left\{ e^{\phi t}\right\} = \frac{1}{\phi -s} \cdot \left(- 1\right)   \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \boxed{\mathcal{L} \left\{ e^{\phi t}\right\} = \frac{1}{s -\phi}}   \end{gathered}$}

  • Com isso, resolvendo sua questão, temos que

\Large\displaystyle\text{$\begin{gathered} \mathcal{L}^{-1} \left\{ \frac{4}{s+4} \right\} = 4\mathcal{L}^{-1} \left\{ \frac{1}{s-(-4)} \right\}    \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \green{\boxed{\mathcal{L}^{-1} \left\{ \frac{4}{s+4} \right\} = 4e^{-4t}}}\ \ (\checkmark ) \end{gathered}$}

Veja mais sobre:

  • brainly.com.br/tarefa/8830533
Anexos:
Perguntas similares