Respostas
Resposta:
O discriminante de uma equação do segundo grau tem algumas funções na fórmula de Bháskara
O discriminante de uma equação do segundo grau é a parte da fórmula de Bháskara na qual se deve calcular a raiz quadrada. Essa parte é representada pela letra grega Δ (delta) e pode ser encontrada por meio da seguinte equação:
Δ = b2 – 4·a·c
Sendo assim, a fórmula de Bháskara, na realidade, é a seguinte:
x = – b ± √(b2 – 4·a·c)
2·a
Entretanto, essa fórmula é ensinada em duas etapas por questões didáticas e pela importância do discriminante em outros cálculos.
Quantidade de soluções de uma equação
As equações do segundo grau podem ter até duas soluções reais. Por meio do discriminante, é possível descobrir quantas soluções a equação terá. Muitas vezes, o exercício solicita isso em vez de perguntar quais as soluções de uma equação. Então, nesse caso, não é necessário resolvê-la, mas apenas fazer o seguinte:
Se Δ < 0 a equação não possui soluções reais
Se Δ = 0 a equação possui apenas uma solução real
Se Δ > 0 a equação possui duas soluções reais
Isso acontece porque, na fórmula de Bháskara, calcularemos a raiz de Δ. Se o discriminante é negativo, é impossível calcular essas raízes. Além disso, observe o exemplo abaixo para verificar o porquê de uma equação do segundo grau possuir duas raízes.
x2 = 16
x = ± √16
O sinal ± aparece porque tanto 4·4 = 16 quanto (– 4)(– 4) = 16. Logo, a equação acima possui dois resultados. É impossível que ela possua mais do que isso, pois é uma equação do segundo grau.
Estudo dos sinais de uma equação do segundo grau
O estudo dos sinais é justamente o uso do valor do discriminante para determinar quantas soluções reais a equação possui. É assim chamado porque, aliado ao valor do coeficiente “a”, pode ser usado para descobrir em qual intervalo uma função do segundo grau é positiva e/ou negativa. Nas equações, o estudo dos sinais resume-se a:
Se Δ < 0, nenhuma solução real
Se Δ = 0, uma solução real (ou duas soluções iguais)
Se Δ > 0, duas soluções reais distintas
“Solução real” quer dizer que os valores de x que a equação pode assumir pertencem ao conjunto dos números reais. Avaliando a equação do segundo grau em que Δ < 0, em outro conjunto numérico, pode ser que ela possua mais soluções. Esse conjunto no qual a equação que possui Δ < 0 tem mais soluções é chamado de conjunto dos números complexos.
Vértice de uma função do segundo grau
Além disso, nas funções do segundo grau, o valor do discriminante é usado para determinar a posição do vértice com relação ao eixo y. Sendo xv e yv as coordenadas do vértice da função do segundo grau, a coordenada yv pode ser encontrada fazendo uso da seguinte fórmula:
yv = – Δ
4a
Lembrando que encontrar o vértice de uma função tem a importante finalidade de determinar seu ponto de máximo ou de mínimo.
Nesta questão, encontraremos as soluções (raízes reais) dessas equações de 2° grau por meio da fórmula de Bhaskara, tal que é dada por:
Efetuando os cálculos, eventualmente poderemos encontrar zero, uma ou duas raízes reais. Isso pode ser definido previamente via análise do valor do discriminante (∆), que é calculado através da expressão que está dentro do radical, acima.
Mais precisamente, temos que:
- se ∆ > 0, são duas raízes reais;
- se ∆ = 0, é uma raiz real;
- se ∆ < 0, são zero raízes reais.
Além disso, vale lembrar que as equações onde a ≠ 0 e b = 0 ou a = 0 e b ≠ 0 podem ser resolvidas igual às de 1° grau, isolando a incógnita.
Na resolução das equações de 2° grau, é crucial saber identificar os coeficientes. Portanto, vamos revisá-los:
- coeficiente a = aquele que acompanha o x^2;
- coeficiente b = aquele que acompanha o x;
- coeficiente c = aquele que fica sozinho (termo independente).
→ Agora, vamos aos cálculos:
Obs.: Perceba que quando a incógnita muda também devemos mudá-la na fórmula. A incógnita x é apenas a incógnita-base dessa fórmula, então não há problema nenhum em alterá-la!
Saiba mais em:
brainly.com.br/tarefa/9847148
brainly.com.br/tarefa/15076013
brainly.com.br/tarefa/20718756
brainly.com.br/tarefa/21167222