Respostas
Resposta:
MULTIPLICAÇÃO DE POLINÔMIOS
MATEMÁTICA
Nas situações envolvendo cálculos algébricos, é de extrema importância a aplicação de regras nas operações entre os monômios. As situações aqui apresentadas abordarão a adição, a subtração e a multiplicação de polinômios.
Adição e Subtração
Não pare agora... Tem mais depois da publicidade ;)
Considere os polinômios –2x² + 5x – 2 e –3x³ + 2x – 1. Vamos efetuar a adição e a subtração entre eles.
Adição
(–2x² + 5x – 2) + (–3x³ + 2x – 1) → eliminar os parênteses realizando o jogo de sinal
Não pare agora... Tem mais depois da publicidade ;)
–2x² + 5x – 2 – 3x³ + 2x – 1 → reduzir os termos semelhantes
–2x² + 7x – 3x³ – 3 → ordenar de forma decrescente de acordo com a potência
–3x³ – 2x² + 7x – 3
Subtração
(–2x² + 5x – 2) – (–3x³ + 2x – 1) → eliminar os parênteses realizando o jogo de sinal
–2x² + 5x – 2 + 3x³ – 2x + 1 → reduzir os termos semelhantes
–2x² + 3x – 1 + 3x³ → ordenar de forma decrescente de acordo com a potência
3x³ – 2x² + 3x – 1
Multiplicação de polinômio por monômio
Para entendermos melhor, observe o exemplo:
(3x2) * (5x3 + 8x2 – x) → aplicar a propriedade distributiva da multiplicação
15x5 + 24x4 – 3x3
Multiplicação de polinômio por polinômio
Para efetuarmos a multiplicação de polinômio por polinômio também devemos utilizar a propriedade distributiva. Veja o exemplo:
(x – 1) * (x2 + 2x - 6)
x2 * (x – 1) + 2x * (x – 1) – 6 * (x – 1)
(x³ – x²) + (2x² – 2x) – (6x – 6)
x³ – x² + 2x² – 2x – 6x + 6 → reduzindo os termos semelhantes.
x³ + x² – 8x + 6
Portanto, nas multiplicações entre monômios e polinômios aplicamos a propriedade distributiva da multiplicação.