Determine os valeres de A, B e D na função () = + . cos ( + ), sabendo que seu gráfico está representado abaixo.
Respostas
O coeficiente a, número real que multiplica x2, pode ser usado para indicar a concavidade da parábola da seguinte maneira:
Se a > 0, a concavidade da parábola é voltada para cima.
Se a < 0, a concavidade da parábola é voltada para baixo.
A melhor maneira de saber o que é a concavidade é observar um exemplo. Na figura a seguir, por exemplo, a concavidade da parábola à esquerda é voltada para cima, e a concavidade da figura à direita é voltada para baixo.
Portanto, na parábola à esquerda, a > 0; e, na parábola à direita, a < 0.
Além disso, o coeficiente a também é responsável pela “abertura” da parábola. Para perceber isso, considere dois pontos A e B, obtidos pela interseção de uma reta paralela ao eixo x e a parábola. Quanto maior o valor do módulo do coeficiente a, menor será a distância entre os pontos A e B, como mostra o exemplo da seguinte imagem:
Coeficiente C
O coeficiente C, em uma função do segundo grau, está relacionado ao ponto de encontro da parábola com o eixo y. Isso acontece porque qualquer ponto de encontro com o eixo y precisa necessariamente ter a coordenada x = 0. Por outro lado, se quisermos saber o ponto de encontro de uma função com o eixo x, a coordenada y é que deverá ser igual a 0.
Fazendo x igual a zero na forma geral das funções do segundo grau, o seguinte resultado será encontrado:
y = ax2 + bx + c
y = a02 + b0 + c
y = c
Assim, o par ordenado em que acontece o encontro entre parábola e o eixo y é: (0, c). Como os cálculos foram feitos para a forma geral das funções do segundo grau, então esse resultado é válido para todas elas.
Na função y = 2x2 – 4x + 1, por exemplo, o ponto de encontro entre o eixo y e a parábola é (0, 1), conforme mostra a imagem a seguir: