• Matéria: Matemática
  • Autor: Anônimo
  • Perguntado 3 anos atrás

Considere a função f(x)=(ln(x²)+5x³)/1+cos²x, o valor de f'(x)=(π/2) é igual a

Respostas

respondido por: Skoy
19
  • A derivada da função f(x) no ponto π/2 é igual a:

   \Large\displaystyle\text{$\begin{gathered}f'\left( \frac{\pi}{2}\right)=\dfrac{16+15\pi^3}{4\pi}\end{gathered}$}

Para resolver sua questão, iremos primeiramente aplicar a derivada do quociente, dada da seguinte forma:

           \Large\displaystyle\text{$\begin{gathered}\underline{\boxed{ \left( \frac{f}{g}\right)'=\frac{f'\cdot g- f\cdot g'}{g^2}}} \end{gathered}$}

Aplicando na sua questão, temos que:

\Large\displaystyle\text{$\begin{gathered}f(x)=\frac{\ln(x^2)+5x^3}{1+\cos^2(x)}  \end{gathered}$}

\large\displaystyle\text{$\begin{gathered}f'(x)=\frac{\left(\ln(x^2)+5x^3\right)'\left(1+\cos^2(x)\right)-\left(\ln(x^2)+5x^3\right)\left(1+\cos^2(x)\right)'}{\left(1+\cos^2(x)\right)^2}  \end{gathered}$}

Vale ressaltar também as seguintes fórmulas:

 \Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\cos^2(x)=\frac{1+\cos(2x)}{2}}}   \ \ \wedge \ \ \underline{\boxed{(a+b)^2=a^2+2ab+b^2}}\end{gathered}$}

Sabendo disso, logo:

\large\displaystyle\text{$\begin{gathered}f'(x)=\frac{\left(\ln(x^2)+5x^3\right)'\left(1+\cos^2(x)\right)-\left(\ln(x^2)+5x^3\right)\left(1+\cos^2(x)\right)'}{\left(1+\dfrac{1+\cos(2x)}{2} \right)^2}  \end{gathered}$}

\large\displaystyle\text{$\begin{gathered}f'(x)=\frac{\left(\ln(x^2)+5x^3\right)'\left(1+\cos^2(x)\right)-\left(\ln(x^2)+5x^3\right)\left(1+\cos^2(x)\right)'}{1^2+\!\diagup\!\!\!\!2\cdot\left( \dfrac{1+\cos(2x)}{\!\diagup\!\!\!\!2} \right)+\left(\dfrac{1+\cos(2x)}{2}\right)^2}\end{gathered}$}

Resolvendo as derivadas, temos que:

\Large\displaystyle\text{$\begin{gathered} \frac{d(\ln(x^2)+5x^3)}{dx} =\frac{2}{x}+15x^2 \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \frac{d(1+\cos^2x)}{dx} =-\sin(2x) \end{gathered}$}

Ficando então:

\large\displaystyle\text{$\begin{gathered}f'(x)=\frac{\left(\dfrac{2}{x}+15x^2 \right)\left(1+\cos^2(x)\right)+\sin(2x)\left(\ln(x^2)+5x^3\right)}{2+\cos(2x)+\left(\dfrac{1+\cos(2x)}{2}\right)^2}\end{gathered}$}

Aplicando o limite em f'(x) quando x tende a π/2, temos que:

\large\displaystyle\text{$\begin{gathered} \lim_{x \to \frac{\pi}{2}} \frac{\left(\dfrac{2}{x}+15x^2 \right)\left(1+\cos^2(x)\right)+\sin(2x)\left(\ln(x^2)+5x^3\right)}{2+\cos(2x)+\left(\dfrac{1+\cos(2x)}{2}\right)^2}\end{gathered}$}

\large\displaystyle\text{$\begin{gathered} \frac{\left(\dfrac{4}{\pi}+15\left(\dfrac{\pi}{2}\right)^2 \right)\left(1+\cos^2\left(\dfrac{\pi}{2}\right)\right)+\sin(\pi)\left(\ln\left(\dfrac{\pi}{2}\right)^2+5\left(\dfrac{\pi}{2}\right)^3\right)}{2+\cos(\pi)+\left(\dfrac{1+\cos(\pi)}{2}\right)^2}\end{gathered}$}

Agora é só simplificar, logo:

\large\displaystyle\text{$\begin{gathered} f'\left( \frac{\pi}{2}\right)=\frac{\left(\dfrac{4}{\pi}+\dfrac{15\pi^2}{4} \right)+0}{2-1+\left(\dfrac{1-1}{2}\right)^2}\end{gathered}$}

\large\displaystyle\text{$\begin{gathered} f'\left( \frac{\pi}{2}\right)=\dfrac{4}{\pi}+\dfrac{15\pi^2}{4}\end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\therefore \green{\underline{\boxed{ f'\left( \frac{\pi}{2}\right)=\dfrac{16+15\pi^3}{4\pi}}}}\ \ (\checkmark ).\end{gathered}$}

Veja mais sobre:

  • brainly.com.br/tarefa/48296433
Anexos:

Anônimo: sdsss
Anônimo: se
Anônimo: ee
Anônimo: eeee
Anônimo: eeeeeeeeee
Anônimo: eeeeeeeee
Anônimo: eeeeee
Nitoryu: Olá skoy, você poderia me ajudar com um exercício que publiquei? : p
Skoy: Opa chefe, posso sim mas não hoje :)
Nitoryu: Ok obrigado mano :^
Perguntas similares